Contents

<table>
<thead>
<tr>
<th>Section</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>Preface</td>
<td>v</td>
</tr>
<tr>
<td>Audience</td>
<td>vi</td>
</tr>
<tr>
<td>Printers Covered in this Publication</td>
<td>viii</td>
</tr>
<tr>
<td>About This Publication</td>
<td>ix</td>
</tr>
<tr>
<td>Related Publications and Standards</td>
<td>x</td>
</tr>
<tr>
<td>Chapter 1. General Guidelines for Selecting Forms</td>
<td></td>
</tr>
<tr>
<td>Terminology</td>
<td>1</td>
</tr>
<tr>
<td>Print Areas</td>
<td>2</td>
</tr>
<tr>
<td>Standards for Clear Zones</td>
<td></td>
</tr>
<tr>
<td>Clear Zones for Side Verify Marks on Tractored Forms</td>
<td>4</td>
</tr>
<tr>
<td>Clear Zones for Side Verify Marks on Tractorless Forms</td>
<td>4</td>
</tr>
<tr>
<td>Clear Zones for Forms Identification Bar Codes on Preprinted Forms</td>
<td>5</td>
</tr>
<tr>
<td>Standards and Tolerance</td>
<td></td>
</tr>
<tr>
<td>Page Uniformity</td>
<td>7</td>
</tr>
<tr>
<td>Forms Tolerances</td>
<td>7</td>
</tr>
<tr>
<td>Stack Lean</td>
<td>9</td>
</tr>
<tr>
<td>Dishing</td>
<td>11</td>
</tr>
<tr>
<td>Edge Accuracy</td>
<td>13</td>
</tr>
<tr>
<td>Perforation and Tractor Hole Accuracy</td>
<td>14</td>
</tr>
<tr>
<td>Perforation Fold Memory</td>
<td>17</td>
</tr>
<tr>
<td>Perforation Embossing</td>
<td>18</td>
</tr>
<tr>
<td>Perforation Strength</td>
<td>19</td>
</tr>
<tr>
<td>Tractorless Forms Restrictions</td>
<td>22</td>
</tr>
<tr>
<td>Packaging</td>
<td>23</td>
</tr>
<tr>
<td>Chapter 2. Selecting Forms</td>
<td></td>
</tr>
<tr>
<td>Paper Quality</td>
<td>25</td>
</tr>
<tr>
<td>Paper Dust Contamination</td>
<td></td>
</tr>
<tr>
<td>Paper Weight and Thickness</td>
<td></td>
</tr>
<tr>
<td>InfoPrint 4000 Paper Weight and Thickness</td>
<td>27</td>
</tr>
<tr>
<td>InfoPrint 4100 Paper Weight and Thickness</td>
<td>30</td>
</tr>
<tr>
<td>Size</td>
<td></td>
</tr>
<tr>
<td>InfoPrint 4000 Forms Dimensions</td>
<td>32</td>
</tr>
<tr>
<td>InfoPrint 4100 Forms Dimensions</td>
<td>33</td>
</tr>
<tr>
<td>Smoothness</td>
<td></td>
</tr>
<tr>
<td>Fusing Ability</td>
<td>35</td>
</tr>
<tr>
<td>Summary of Form Selection Recommendations</td>
<td>36</td>
</tr>
<tr>
<td>Chapter 3. Forms Recommendations for High-Resolution Printers</td>
<td>37</td>
</tr>
<tr>
<td>Chapter 4. InfoPrint 62 Forms Specifications</td>
<td></td>
</tr>
<tr>
<td>Shipping, Storage, and Operating Environment</td>
<td>41</td>
</tr>
<tr>
<td>Chapter 5. InfoPrint 3000 Forms Specifications</td>
<td></td>
</tr>
<tr>
<td>InfoPrint 3000 forms dimensions</td>
<td>43</td>
</tr>
<tr>
<td>InfoPrint 3000 basis weights</td>
<td>43</td>
</tr>
<tr>
<td>Chapter 6. 3900 Forms Specifications</td>
<td></td>
</tr>
<tr>
<td>3900 Forms Dimensions</td>
<td>45</td>
</tr>
<tr>
<td>3900 Basis Weight</td>
<td>45</td>
</tr>
</tbody>
</table>

© Copyright InfoPrint Solutions Company 2007, 2011
Chapter 7. Selecting Preprinted Forms.	47
General Recommendations	48
Vapor Emissions from Preprinted Forms	49
Electronic Overlays	50
Forms for Advertising	51
Forms for Negotiable Documents.	52
Chapter 8. Selecting Special-Purpose Materials	53
Prepunched Forms	53
Labels	56
Label Design	56
Label Types	56
Label Design Requirements	58
Chapter 9. Developing Special Applications	61
Optical Character Recognition Forms	61
Bar Code Forms	61
Colors	62
Forms Identification Bar Codes	63
Bar Code Structure	63
Bar Code Size and Placement	64
Registration Marks in Tractorless Mode With the Universal Forms Control (UFC) Sensor	66
Registration Marks on the InfoPrint 4100 using the Universal Forms Control (UFC) sensor	67
Location of Registration Marks with the Universal Forms Control (UFC) sensor	68
Location of Registration Marks for the Universal Forms Control (UFC) sensor on White Paper in Duplex Mode	69
Registration Marks in Tractorless Mode Without the Universal Forms Control (UFC) Sensor	70
Registration Marks on the InfoPrint 4000	70
Registration Marks on the InfoPrint 4100	71
Registration Marks on the InfoPrint 4000 Model ID5/6 with RPQ 8B4281	72
Location of Registration Marks on Rolled Forms	73
Location of Registration Marks with Dual Toner Mark/Side Verify Sensor (FC 4570/9570)	75
Location of Registration Marks on White Paper in Duplex Mode	76
Chapter 10. Testing Forms and Applications	77
Questions and Answers: Testing Forms and Applications	77
What is an Ideal Form and Application?	77
When Should I Test My Forms and Applications?	77
What Will Testing Tell Me?	78
How Do I Evaluate the Test Results?	79
What Kind of Testing Should I Do?	79
Troubleshooting	82
Printing on the Reverse Side	82
Chapter 11. Safety Practices	83
Blank Forms	83
Preprinted Forms	83
Electronic Overlays	84
Labels	84
Multipart Carbonless Forms	84
Appendix. Basis Weight and Grams/Square Meter of Paper	85
Notices	87
Trademarks	89
Information about Installed Software	90
Glossary .. 91
Index .. 97
Preface

This publication describes important characteristics of the forms and special-purpose media that can be used with InfoPrint Solutions continuous forms monochrome printers.

For more information about these printers, refer to the appropriate Introduction and Planning Guide or Planning and Configuration Guide for each printer.

A broad range of output supplies is available. Because some supplies work better than others, choosing the most appropriate supplies can help ensure that you get the best possible results from your continuous forms printer. Your printer may require the addition of optional features to accommodate the full range of supplies that are available.

Audience

This publication is for people who order forms and special-purpose materials, such as labels, prepunched forms, or preprinted forms. It also contains information for people who develop applications that use preprinted forms, optical character recognition (OCR), bar codes, or other unusual printed output.

You need not read this reference manual sequentially from front to back. However, if you are responsible for obtaining forms and related output supplies for a continuous forms printer, you should familiarize yourself with all the information that is presented here. Even though the printer is working correctly, it may have problems handling the forms due to poor form characteristics.

Note: The quality of your output depends on the characteristics and quality of the forms and supplies you use.

For standard forms, see Chapter 2, “Selecting Forms,” on page 25. For preprinted forms, see Chapter 7, “Selecting Preprinted Forms,” on page 47.

Planners and buyers may want to share this document with their form manufacturers or suppliers. This publication contains detailed technical information that can help determine which of their products will work best for your particular applications. It is strongly recommended that you test any forms before purchasing large quantities to assure satisfactory performance.
Printers Covered in this Publication

The following machine types and model types are covered in this publication.

<table>
<thead>
<tr>
<th>Printer Name</th>
<th>Machine Type</th>
<th>Model Number</th>
</tr>
</thead>
<tbody>
<tr>
<td>3900 Advanced Function Printer</td>
<td>3900</td>
<td>001</td>
</tr>
<tr>
<td>3900 with Enhanced Print Quality Advanced Function Printer</td>
<td>3900</td>
<td>001</td>
</tr>
<tr>
<td>3900 Wide Advanced Function Printer</td>
<td>3900</td>
<td>0W1, 0W3</td>
</tr>
<tr>
<td>3900 Advanced Function Duplex Printing System</td>
<td>3900</td>
<td>D01, D02</td>
</tr>
<tr>
<td>3900 Advanced Function Wide Duplex Printing System</td>
<td>3900</td>
<td>DW1/DW2, DR1/DR2</td>
</tr>
<tr>
<td>InfoPrint 3000</td>
<td>3300</td>
<td>ES1, ED1/ED2</td>
</tr>
<tr>
<td>InfoPrint 4000</td>
<td>4000</td>
<td>IS1, IS2, ID1/ID2, ID3/ID4, ID5/ID6, IR1/IR2, IR3/IR4</td>
</tr>
<tr>
<td>InfoPrint 4100</td>
<td>4100</td>
<td>PS1, PD1/PD2, MS1, HS1, HS2, HS3, TS1, TS2, TS3, HD1/HD2, MD1/2, HD3/HD4, HD5/HD6, TD1/2, TD3/4, TD5/6</td>
</tr>
<tr>
<td>InfoPrint 62</td>
<td>4370</td>
<td>002, 003</td>
</tr>
</tbody>
</table>
About This Publication

This publication contains the following:

- **Chapter 1, “General Guidelines for Selecting Forms,” on page 1** describes general requirements and recommendations that apply to all forms used by continuous forms printers.

- **Chapter 2, “Selecting Forms,” on page 25** defines quality, weight, thickness, and other forms characteristics that can affect print quality and performance. The specifications for the InfoPrint 4000 and InfoPrint 4100 printers are contained within this chapter.

- **Chapter 3, “Forms Recommendations for High-Resolution Printers,” on page 39** provides general forms recommendations for high-resolution printers.

- **Chapter 4, “InfoPrint 62 Forms Specifications,” on page 41** describes the specifications for the InfoPrint 62 printer that differ from the general specifications discussed in other chapters.

- **Chapter 5, “InfoPrint 3000 Forms Specifications,” on page 43** describes the specifications for the InfoPrint 3000 printers that differ from the general specifications discussed in other chapters.

- **Chapter 6, “3900 Forms Specifications,” on page 45** describes the specifications for the 3900 printers that differ from the general specifications discussed in other chapters.

- **Chapter 7, “Selecting Preprinted Forms,” on page 47** describes factors to consider in selecting forms and inks for preprinted forms.

- **Chapter 8, “Selecting Special-Purpose Materials,” on page 53** details recommendations and limitations regarding prepunched forms and labels.

- **Chapter 9, “Developing Special Applications,” on page 61** provides specifications for OCR forms, bar code forms, and registration marks.

- **Chapter 10, “Testing Forms and Applications,” on page 77** describes techniques for determining if forms are suitable for use with continuous forms printers.

- **Chapter 11, “Safety Practices,” on page 83** describes health and safety considerations for a variety of forms and preprinted forms.

- **“Basis Weight and Grams/Square Meter of Paper,” on page 85** gives the conversion values of common paper stocks, pounds/ream to grams per square meter.

- **“Glossary” on page 91** defines terms used in continuous forms printer documentation.
Related Publications and Standards

The following publications are referred to in this document:

- *Collaborative Reference Program for Paper*, U.S. Department of Commerce
- *Guide to Advanced Function Presentation*
- *Bar Code Fonts User's Guide*
- *Data Stream and Object Architectures, Bar Code Content Architecture Reference*

The following standards are referred to in this document:

- *American Society for Testing Materials (ASTM) Standards*
- *International Organization for Standardization, ISO 1924 (WTC)*
- *International Organization for Standardization, ISO 187*
- *American Society of Heating, Refrigeration, and Air Conditioning Engineers (ASHRAE) 62-1989*
Chapter 1. General Guidelines for Selecting Forms

The quality and consistency of performance of continuous forms printers are directly related to the quality and consistency of the forms used for printing. This chapter explains important issues to consider when you select forms for a continuous forms printer. Items to consider include:

- Form stock
- Print areas
- Standards and tolerances
- Packaging
- Shipping, storage, and operating environment.

For best performance, use forms that meet the recommendations in this guide. Provide the form vendor with the form criteria outlined in “Summary of Form Selection Recommendations” on page 37 and request forms that meet these criteria.

You may need to work with the form vendor to optimize some characteristics for your application. It is strongly recommended that you test all forms before purchasing large quantities to assure satisfactory performance.

See Chapter 3, “Forms Recommendations for High-Resolution Printers,” on page 39 for important information about forms for high-resolution printers.
Terminology

This publication uses familiar terms that also have precise technical meanings. Knowing these technical definitions will help you use and understand the information in this document.

Form refers to a continuous fanfold (box) or roll-feed set of pages on which the printer can print. Forms can be blank paper, preprinted paper, adhesive labels, cards, or any other printable material. *Paper* is a specific fiber-based material used to make forms.

The *forms path* (often referred to as the paper path) is the entire route that forms travel while they are being processed. The forms path usually begins where the forms are loaded, and ends at the stacker or postprocessing device. Forms that are threaded through the printer forms path are known as the *forms web*, or the *web*.

Perforation refers to a series of small cuts made in a form to serve as an aid in separation. Perforations consist of cuts and ties. A *cut* occurs where the form is severed, and a *tie* is the small connection of form between cuts.

Horizontal perforations separate sheet lengths of continuous forms and are either page perforations or fold perforations. *Page* perforations define the lengths of forms; *fold* perforations define the points at which forms are folded for stacking. A page perforation may or may not be a fold perforation, depending on the length of the form.

Running perforations are vertical and are next to the tractor holes (holes in the side margins). Perforations other than running and fold perforations are referred to as *internal* perforations. These perforation terms are illustrated in Figure 1.

For definitions of other terms, refer to the “Glossary” on page 91. The glossary contains terms that are used in this publication and in other printer documentation.

Figure 1. Types of Perforations
Print Areas

A continuous forms printer can print to the perforation (see Figure 2). However, print quality is reduced near a folding perforation, an internal perforation, or any cut in the form. For example, poor toner transfer may occur because of the perforation or fold.

Figure 2. Print Area

Note: Printing on the areas near the perforations is not recommended because print quality may not be acceptable.

To ensure correct operation and print quality, maintain the following distances for the print area:

- From internal and running perforations: 1.27 mm (0.05 in.)
- From folding perforations: for text, 8.5 mm (0.33 in.); for images, 12.7 mm (0.5 in.)
- From binder holes or cuts: 2.54 mm (0.1 in.).

Forms ripple (caused by humidity stress during shipping, storage, or printing) and embossing (caused by dull cutting equipment or other paper-handling equipment during form manufacturing) may produce voiding within the print area. This voiding, where some of printed text or graphics is not printed, usually occurs near the edges of the print area or adjacent to perforations or holes.

Printing-to-perforation performance is optimum at 18.3° to 23.9°C (65° to 75°F) and 40% to 60% relative humidity. The performance may be significantly degraded at environmental extremes.
Standards for Clear Zones

Clear zones are reserved areas that should contain no printing. This clear zone area must be maintained for printing side verify marks, which are used to ensure front-to-back or page-to-page registration. It must also be maintained on preprinted forms that contain forms identification bar codes.

Clear Zones for Side Verify Marks on Tractored Forms

In the default configuration for tractored forms, the clear zone starts 12.7 mm (0.5 in.) from the leading edge of the form in the process direction and it must measure 54.98 mm (2.15 in.) in length and 6.35 mm (0.25 in.) in width. The location of the clear zone can be moved in the vertical direction using a setting on the AFCCU console.

Notes:
1. In the default configuration, side verify marks (which include a 2.54 mm (0.1 in.) leading blank space) are located 33.0 mm (1.3 in.) from the leading edge of the form.
2. The clear zone must be maintained in the correct position relative to the side verify mark location.

InfoPrint 4000

Figure 3 shows the location of the clear zone for side verify marks on tractored forms on the InfoPrint 4000. In the scan direction, the inside edge of the clear zone must start 12.7 mm (0.5 in.) in from the outside edge of form. In the process direction, the clear zone may be located anywhere from 12.7 mm (0.5 in.) from the leading edge to 60.96 mm (2.4 in.) before the trailing edge of the form.

![Figure 3. Clear Zone on the InfoPrint 4000 for Tractored Forms](image)

InfoPrint 4100

Figure 4 shows the location of the clear zone for side verify marks on tractored forms on the InfoPrint 4100. In the scan direction, the clear zone must start at the outside edge of the tractor holes. In the process direction, the clear zone may be located anywhere from 12.7 mm (0.5 in.) from the leading edge to 60.96 mm (2.4 in.) before the trailing edge of the form.

![Figure 4. Clear Zone on the InfoPrint 4100 for Tractored Forms](image)
Clear Zones for Side Verify Marks on Tractorless Forms

In the default configuration for tractorless forms, the clear zone starts from the leading edge of the form in the process direction and it must measure 17.86 mm (0.7 in.) in length and 5.16 mm (0.2 in.) in width. The location of the side verify marks can be moved in the vertical direction using a setting on the operator console.

Notes:
1. In the default configuration, side verify marks (which include a 2.54 mm (0.1 in.) leading blank space) are located 33.0 mm (1.3 in.) from the leading edge of the form.
2. The clear zone must be maintained in the correct position relative to the side verify mark location.

InfoPrint 4000/4100

Figure 5 shows the location of the clear zone for side verify marks on tractorless forms on the InfoPrint 4000 and InfoPrint 4100. In the scan direction, the clear zone must start at the outside edge of the form. In the process direction, the clear zone may be located anywhere from 33.3 mm (1.3 in.) from the leading edge to 27.94 mm (1.1 in.) before the trailing edge of the form.

InfoPrint 4000 Models ID5/ID6 with RPQ 8B4281

Figure 6 shows the location of the clear zone for side verify marks on tractorless forms on the InfoPrint 4000 Models ID5/ID6 with RPQ 8B4281. In the scan direction, the inside edge of the clear zone must start 12.7 mm (0.5 in.) in from the outside edge of the form. In the process direction, the clear zone may be located anywhere from 5.16 mm (0.2 in.) from the leading edge to 27.94 mm (1.1 in.) before the trailing edge of the form.

Figure 5. Clear Zone on the InfoPrint 4000/4100 for Tractorless Forms

Figure 6. Clear Zone on the InfoPrint 4100 (with RPQ 8B4281) for Tractorless Forms
Clear Zones for Forms Identification Bar Codes on Preprinted Forms

To ensure proper printing of forms identification bar codes on tractored forms, a clear zone must be maintained starting at the leading edge of the form in the process direction. This clear zone must measure 81.28 mm (3.2 in.) in length and 6.35 mm (0.25 in.) in width.

Figure 7 shows the location of the clear zone for forms identification bar codes on preprinted forms on the InfoPrint 4000 and InfoPrint 4100. In the scan direction, the clear zone must start at the outside edge of form, inside the tractor holes. In the process direction, the clear zone must start at the leading edge of the form.

Note: Requirements for the size and dimension of the forms identification bar code are described in "Bar Code Size and Placement" on page 64.

Figure 7. Clear Zone for Forms Identification Bar Codes on InfoPrint 4000/4100
Standards and Tolerances

You can avoid printer problems and operator interventions by using only those forms that meet the standards and tolerances that are described in this section. Simple tests are included to help you determine if the forms you select are within the tolerances that are specified for a continuous forms printer. You may want to share this information with your form manufacturers and obtain their assistance in performing these tests.

Page Uniformity

For optimal performance, form pages must be within the tolerances shown in Figure 8. To ensure correct printing and form feeding, the two vertical rows of tractor holes must be parallel.

All measurements should be made at 22.8\degree ±2.8°C (73\degree ±5°F) and at 50% ±5% relative humidity.

See “Forms Tolerances.” The accumulation of individual tolerances should not exceed the specified width tolerance of ±1.52 mm (±0.060 in.).

Forms Tolerances

Figure 8. Forms Dimension and Perforation Requirements
Notes:

1. The center of the tractor holes in the left margin should be lined up within 0.13 mm (0.005 in.) of the A axis. The center of the tractor holes in the right margin should be lined up within 0.13 mm (0.005 in.) of the B axis.

2. Spacing from any tractor hole to another should be the correct multiple of the adjacent hole space of 12.7 ±0.13 mm (0.50 ±0.005 in.).

3. Serrated feeding holes with a 3.86 mm (0.152 in.) inside diameter and a 4.37 mm (0.177 in.) maximum outside diameter are preferred. Continuous forms with a tractor-hole diameter of 4.0 ±0.10 mm (0.156 ±0.004 in.) in both right and left margins are acceptable.

4. Internal vertical perforations should not be closer than 25.4 mm (1.0 in.) to the edge of the form to avoid form breaks and jams.

5. For optimal form stacking, internal horizontal perforations should be at least 50.8 mm (2.0 in.) from the top or bottom of the form. To minimize premature folding in the stacker, any internal horizontal perforations should be stronger than the between-forms perforations.

6. Hole-to-hole widths and their tolerances are shown in Table 1.

Table 1. Hole Tolerances

<table>
<thead>
<tr>
<th>Hole-to-Hole Widths (Width – 12.7 mm [0.5 in.])</th>
<th>Tolerances</th>
<th>Single-Pack Variation</th>
</tr>
</thead>
<tbody>
<tr>
<td>mm</td>
<td>±mm</td>
<td>±inches</td>
</tr>
<tr>
<td><203.2</td>
<td>1.17</td>
<td>0.046</td>
</tr>
<tr>
<td>203.2 to 254.0</td>
<td>1.27</td>
<td>0.050</td>
</tr>
<tr>
<td>254.0 to 304.8</td>
<td>1.37</td>
<td>0.054</td>
</tr>
<tr>
<td>>304.8</td>
<td>1.50</td>
<td>0.059</td>
</tr>
</tbody>
</table>

The tolerances are based on a flat tolerance of 0.76 mm (0.030 in.) +0.051 mm (0.002 in.) for each inch width of the maximum hole-to-hole width.

For fanfold (box) forms, the single-pack variation applies to the variance expected within a single pack (one carton or roll) of forms. The tolerance limit of a form may vary within an order or from shipment to shipment. But within one carton or roll of forms, the variation should not be greater than the single-pack variation noted for the width used.
Stack Lean
The following information applies to fanfold (box) forms only. This information does not apply to continuous roll-feed forms.

Stack Gauge
A stack of new forms should be square and not lean to either side. There are two methods for testing stack lean: one for unpackaged forms and another for packaged forms. InfoPrint Solutions can supply a stack gauge (part number 4792992) for measuring the slope of a form stack. Contact your marketing representative for information about ordering this gauge.

Testing Before Packaging
The stack should not exceed a slope from the vertical greater than 76 mm per 305 mm (3 in. per 12 in.) of stack height, as shown in Figure 9.

The following stack lean test is for forms that have not been packaged:
1. Ruffle 51 mm (2 in.) of forms.
2. Ruffle all four edges several times.
3. Measure the slope from the vertical, which should not exceed 13 mm for every 51 mm (0.50 in. for every 2 in.) of stack height.

If the stack lean exceeds the angle of the gauge, it exceeds the lean requirements of 76 mm in 305 mm (3 in. in 12 in.) of stack height and significantly reduces stacker performance.
Testing After Packaging

After forms are packaged, they often have folds that are force-folded during packaging and are not folded on the actual perforation.

The following stack lean test is for forms that have been packaged:

1. Obtain a sample of unprocessed and undamaged forms (not less than 40 pages).
2. Loosely back-fold the sample (reverse the existing folds), and carefully break the folds along the perforation center.
3. Without compressing the folds, place the loosely back-folded stack on a flat surface (see Figure 10).
4. With your fingers, compress the stack as flat as possible on the top. Do not induce lean. Keep a downward pressure on the stack until measurements are complete.
5. Select the area of worst lean along one side and apply finger pressure to remove all the air between the sheets. Use the gauge (see “Stack Gauge” on page 9) to test the stack lean as shown in Figure 10.
6. Repeat steps 4 and 5 for the adjacent edge of the stack. Both side and fold edges of the stack must be checked.

![Stack Lean Test Diagram]

Figure 10. Stack Lean Test for Packaged Forms

If the stack lean exceeds the angle of the gauge, it exceeds the lean requirements of 76 mm in 305 mm (3 in. in 12 in.) of stack height and significantly reduces stacker performance.
Dishing

The following information applies to fanfold (box) forms only. This information does not apply to continuous roll-feed forms.

Dishing refers to the curve a stack of forms takes when folded or refolded at the fold perforations. Excessive dishing significantly reduces stacker performance. Test both new forms and forms that have been processed by a continuous forms printer to determine dishing amounts.

New Forms

Figure 11 shows the method for measuring dishing for new forms. Dishing should not exceed 0.067 times the stack height. For example:

- For a stack 305 mm (12 in.) high, dishing should not exceed 20 mm (0.8 in.).
- For a stack 229 mm (9 in.) high, dishing should not exceed 15 mm (0.6 in.).

![Diagram of new forms dishing](image)

Measure the distance between the bottom of the curve and the highest point among the four corners.

Figure 11. Dishing Effects for New Forms

Dishing often results when the manufacturer uses dull or incorrectly aligned paper cutters to cut page perforations.

Processed Forms

Figure 12 on page 12 shows the method for measuring dishing for processed forms. Dishing should not exceed 0.137 times the stack height. For example:

- For a stack 305 mm (12 in.) high, dishing should not exceed 41 mm (1.6 in.).
- For a stack 241 mm (9.5 in.) high, dishing should not exceed 33 mm (1.3 in.).
The dishing effect is generally greater on processed forms than on new forms. The severity of dishing depends on the quality of the forms. The following reasons may contribute to the dishing effect:

- Heat from the high-temperature fusing station reduces the folding memory of the page perforations. See "Perforation Fold Memory" on page 17 for more information.
- Heat from the high-temperature fusing station causes uneven shrinking of the form and distorts the shape of the stack (as shown in Figure 12).
Edge Accuracy
The following information applies to both fanfold (box) and continuous roll-feed forms.

Edge accuracy refers to the accuracy with which tractor holes are drilled along the edges of the forms. Inaccurately drilled holes significantly reduce forms-feed performance through the printer.

To test edge accuracy:
1. Tear two lengths of forms, each about 2 meters (7 ft.) long, from the stack.
2. Place the two lengths on top of each other on a flat surface. Match the tractor holes of both edges of the top sheet to those of the bottom sheet at one end of the forms.
3. At the other end of the forms, measure the distance from the tractor holes of the top sheet to those of the bottom sheet, as shown in Figure 13. The distances must not be greater than shown.

Figure 13. Edge Accuracy
Perforation and Tractor Hole Accuracy

The following information applies to both fanfold (box) and continuous roll-feed forms.

Perforation accuracy refers to the accuracy with which page and fold perforations are cut, perpendicular to the edge of the page. Inaccurately-cut perforations affect form folding and may significantly reduce stacker performance.

Tractor hole accuracy refers to the accuracy with which tractor holes are punched. Inaccurately-punched tractor holes affect form feeding and may significantly reduce printer performance.

To check perforation and tractor hole accuracy, do the following:

1. Tear an even number of continuous sheets totaling about 2.8 meters (9 feet) from the stack or roll.
2. If the sheets are perforated, fold them at the middle page perforation and place the first sheet over the last sheet.
 - If the sheets are not perforated, fold the sheets in half with the ends together and form a crease. The non-perforated, folded edge must be creased so that the folded edge is 6.35 mm (0.25 in.) from the tractor holes.
3. Measure the distance from either the edge or the tractor hole of the first sheet to those on the last sheet, as shown in Figure 14 on page 15.
 a. The first tractor holes (top and bottom) after the fold should be aligned, with no offset.
 b. In any given 305 mm (12 in.), the distance between perforations or tractor hole edges must not exceed 0.25 mm (0.01 in.).
 c. The distances at the opposite end (the open end) must not exceed 0.5 mm (0.02 in.).
4. Refer to Figure 14 on page 15 and measure along each edge to verify that in any 305 mm (12 in.) of forms, the distance from either the edge of the tractor holes or the page perforations on the top sheet to the edge of the holes or the page perforations on the bottom sheet does not exceed 0.25 mm (0.01 in.).
5. It is also necessary to ensure that the perforations and tractor holes on both edges of the forms are cut accurately and are not skewed.
 a. Unfold the sheets you folded in step 2.
 b. Refer to Figure 15 on page 16 and fold the sheets lengthwise. Measure the page perforations and tractor holes of the two edges as shown.
 c. The distances between the perforations or the tractor hole edges must not exceed 0.25 mm (0.01 in.) in any given 305 mm (12 in.) or 0.5 mm (0.02 in.) over the full length 2.8 meters (9 ft.).
Figure 14. Perforation Accuracy
These specifications apply in any 305 mm (12 in.) distance.

Figure 15. Perforation Accuracy — Edge to Edge
Perforation Fold Memory

The following information applies to fanfold (box) forms only. This information does not apply to continuous roll-feed forms.

Fold memory is the ability of a stack of forms to refold after being processed by the printer. Uneven folds significantly reduce stacker performance. To check the fold memory of a page perforation:

1. Lift the first five or ten sheets of the forms stack, as shown in Figure 16.
2. Ensure that folds are uniform at all fold perforations.

![Figure 16. Fold Memory](image)

The following note applies to both fanfold (box) and continuous roll-feed forms.

Note: When printing on form lengths greater than 14 inches, the printer stacker must be disabled. The printer must have suitable postprocessing equipment installed.

Duplex printing with boxed forms may require postprocessing equipment. Fold memory may be lost after forms go through two engines. Perform the fold memory test with forms that have been processed in duplex to determine if postprocessing equipment is needed.
Perforation Embossing

The following information applies to both fanfold (box) and continuous roll-feed forms.

Perforation embossing around the cuts and ties of internal, non-folded perforations resulting from cutting and paper-handling equipment causes print quality to deteriorate near the embossing. Generally, this is less noticeable when the embossed (raised) surface of the form is not the print side.

If some deterioration is noticed near perforation embossing, turning the form over in the printer input area may improve print quality (this is valid for duplex systems running in simplex mode). Avoid printing in this area. See "Print Areas" on page 3 for more information.

Note: Printing on the areas near the perforations is not recommended, because print quality may not be acceptable.
Perforation Strength

The following information applies to both fanfold (box) and continuous roll-feed forms.

Perforations consist of cuts and ties. A cut occurs where the form is severed, and a tie is the small connection of form between cuts. The relative length of each determines the strength of the perforation. Weak perforations can break and cause feeding or refolding problems. Overly strong perforations may not refold reliably. See “Perforation Fold Memory” on page 17 for more information.

Internal perforations should be stronger than fold perforations; otherwise, misfolds may occur. For internal perforations, use at least:

- 4.7 cuts per cm (12 cuts per in.)
- 0.81 mm (0.032 in.) tie length.

Requirements for perforation characteristics vary according to perforation type:

<table>
<thead>
<tr>
<th>Perforation Type</th>
<th>Tensile Strength</th>
<th>Tie Minimum</th>
<th>Cut Maximum</th>
</tr>
</thead>
<tbody>
<tr>
<td>Page Perforation, Folded</td>
<td>0.7 to 2.5 kN per linear meter (4 to 14 pounds per linear inch)</td>
<td>0.8 mm (0.03 in.)</td>
<td>3 × tie-length</td>
</tr>
<tr>
<td>Page Perforation, Nonfolded</td>
<td>0.9 to 2.7 kN per linear meter (5 to 15 pounds per linear inch)</td>
<td>0.8 mm (0.03 in.)</td>
<td>3 × tie-length</td>
</tr>
<tr>
<td>Internal Perforation, Vertical ¹</td>
<td>0.7 to 2.5 kN per linear meter (4 to 14 pounds per linear inch)</td>
<td>0.8 mm (0.03 in.)</td>
<td>3 × tie-length</td>
</tr>
<tr>
<td>Internal Perforation, Horizontal ²</td>
<td>0.9 to 2.7 kN per linear meter (5 to 15 pounds per linear inch)</td>
<td>0.8 mm (0.03 in.)</td>
<td>3 × tie-length</td>
</tr>
</tbody>
</table>

Notes:
1. Internal vertical perforations must be at least 50.8 mm (2 in.) from page perforations and at least 25.4 mm (1.0 in.) from form edges to prevent form breaks and jams.
2. Internal horizontal perforations must be at least 50.8 mm (2 in.) from the top and bottom page perforations to prevent errors.

- **Running Perforations**

Forms with running perforations are not recommended for use with continuous forms printers. If you choose to use forms with running perforations, the running perforations should be along both vertical edges. Forms with running perforations along only one edge may cause errors.
• **All Perforations**
 To prevent forms jams, misfeeds, unreliable refolding of fanfold forms in the stacker, and tearing, use only forms that have:
 – Full ties at each perforation edge and cross ties at perforation intersections to help prevent web tears.
 – Perforation cuts made from the front surface of the form. Simplex applications for duplex print on Printer 1 first.
 – Perforations that are cut cleanly and are not embossed. A dull cutting wheel embosses instead of cuts.

The number and strength of a form's perforations can affect the stacking of fanfold (box) forms in the stacker. If there are too many internal perforations, or if they are too weak, form stiffness may be reduced to a point where the forms do not stack in the stacker reliably. This is especially true with 60- to 72-g/m² (16- to 19-pound) forms.

Table 2 lists recommended form length, form weight, and perforation information. Using forms that fit these criteria will ensure reliable operation.

Table 2. Recommendations for Reliable Stacking for Fanfold Forms in Simplex

<table>
<thead>
<tr>
<th>Page Length</th>
<th>Form Weight</th>
<th>Maximum Horizontal Perforations</th>
<th>Maximum Vertical Perforations</th>
</tr>
</thead>
<tbody>
<tr>
<td>mm</td>
<td>g/m²</td>
<td>pounds</td>
<td></td>
</tr>
<tr>
<td>76.2 to 139.7</td>
<td>60 to 72</td>
<td>16 to 19</td>
<td>Not Recommended</td>
</tr>
<tr>
<td>75 to 160</td>
<td>Not Recommended</td>
<td>20 to 42</td>
<td></td>
</tr>
<tr>
<td>152.4 to 165.1</td>
<td>60 to 72</td>
<td>16 to 19</td>
<td>1</td>
</tr>
<tr>
<td>75 to 160</td>
<td>Not Recommended</td>
<td>20 to 42</td>
<td>3</td>
</tr>
<tr>
<td>177.8 to 355.6</td>
<td>60 to 72</td>
<td>16 to 19</td>
<td>1 (see note)</td>
</tr>
<tr>
<td>75 to 160</td>
<td>3 (see note)</td>
<td>20 to 42</td>
<td>3 (see note)</td>
</tr>
</tbody>
</table>

Note: One horizontal or up to three vertical perforations can be used. Thoroughly test the forms for reliable operation before using them for production jobs.

For best performance, use forms that meet the recommendations in this guide. Provide your form vendor with the form criteria outlined in “Summary of Form Selection Recommendations” on page 37 and request forms that meet these criteria.

You may need to work with your form vendor to optimize some characteristics for your application.
Perforation Strength Testing
This section describes a method for testing vertical and horizontal perforations (folding and internal). It includes the equipment needed, the procedure, and the references that contain the evaluation criteria.

Test Equipment:
- Pendulum Type (Schopper-700)
- Load Cell Type (Instron-TM).

The equipment listed for these tests is not required; you may use equipment that provides equivalent functions.

Note: To correlate test equipment, use *Collaborative Reference Program for Paper*, U.S. Department of Commerce.

Suggestions for Testing:
1. Test 25.4 mm (1 in.) samples from each perforation produced by one revolution of the perforation cylinder (15 mm test samples can be used in many countries).
2. Select test samples from the right side, center, and left side of a full perforation.
3. Before testing, condition the samples for 8 to 12 hours at 18.3° to 23.9°C (65° to 75°F) and at 50% ±10% relative humidity.
4. Place the test sample midway and parallel to the jaws of the test equipment.

Test References:
- *American Society for Testing Materials (ASTM) Standards*
- *International Organization for Standardization, ISO 1924 (WTC)*
Tractorless Forms Restrictions

The following restrictions apply to the forms that are used when the printer is operating in tractorless mode:

- No prefolded or box paper can be used in tractorless mode. (Prefolded or box paper can still be used when printing in tractor-feed mode.)
- A registration mark is required to operate in tractorless mode.
 - **Preprinted simplex:** The mark must be preprinted by the forms supplier on the non-print side of the forms.
 - **Plain paper simplex:** The mark will be printed by the printer on the print side of the forms, except for 3900-001 where the mark must be designed into the print application.
 - **Preprinted duplex:** The mark must be preprinted by the forms supplier on both sides of the forms. Alternatively you can have only one preprinted mark (same as preprinted simplex) and have the printer print the second mark as in the plain paper situation.
 - **Plain paper duplex:** The mark will be printed by Printer 1 on the print side of the forms.

See “Registration Marks in Tractorless Mode Without the Universal Forms Control (UFC) Sensor” on page 70 for the placement and dimensional requirements of the registration mark.

Important Note

If the preprinted forms have printing along the same edge as the registration mark, ensure that the forms adhere to the clear area specification around the registration mark. See “Standards for Clear Zones” on page 4 for specific requirements for InfoPrint 4000 and InfoPrint 4100 printers.

Satisfactory operation of the printer in tractorless mode depends greatly on the type and quality of forms that you are using. The following form characteristics can vary widely:

- General friction characteristics
- Effects of preprinted inks
- Burst strength of forms with perforations.

Important

Because of the wide variation in form characteristics, customers are advised to qualify the forms that they will be using before ordering production quantities.
Packaging

The following information applies to fanfold (box) forms only. This information does not apply to continuous roll-feed forms.

Cartons used for shipping forms should contain top and bottom packing to hold the stack of forms firmly in the carton and to prevent damage during handling. This ensures that forms are flat and not damaged at the edges or folds. Avoid using forms with partial breaks in perforations or manufacturers’ splices within the forms.

To avoid tearing webs and to avoid drag, forms should feed freely with sufficient air around the sides of the forms. This can be accomplished several ways:

- Use zip-open cartons whenever possible.
- For cartons without side packing, remove forms from the carton and place them in the forms input area.
- For cartons with side packing, remove the packing from the carton before threading forms through the printer. The recommended minimum thickness of the packing is 4.8 mm (0.19 in.).
- Cut cartons carefully to avoid cutting the forms inside.
- Ensure that cartons do not interfere with the end-of-form sensor beam that is located about 406 mm (16 in.) above the forms input area.
- Labels must be packaged in inner liner plastic bags. Labels (because of multiple layers) are more susceptible to environmental changes.

Cartons should be tightly closed with no open edges that could allow the forms to absorb moisture unevenly. If forms are to be shipped, stored, or printed in an environment outside the recommended range described in "Shipping, Storage, and Operating Environment" on page 24, place a moisture barrier around each carton or group of cartons.

Changes in moisture can reduce print quality, change fusing characteristics, and cause forms jams, misfeeds, unreliable folding, wrinkling, moisture droplets in the printer, and form tearing.

If your printer performance is satisfactory, do not change your forms packaging and storage techniques.
Shipping, Storage, and Operating Environment

The following information applies to both fanfold (box) and continuous roll-feed forms.

Keep forms in their sealed shipping container (the box or wrapped roll) until they are loaded into the printer. The sealed shipping container lessens moisture absorption during shipment from the supplier and during storage. Variations in temperature and humidity affect form size, weight, and flatness, which in turn affect print quality and printer performance.

Store the sealed shipping containers off the floor (on a pallet, for example). In the case of fanfold forms, you can usually stack boxes up to six high, with each box squarely set on the one underneath. Do not place additional weight on the stack. When stacking boxes, consider the strength and stability of the boxes and the weight of the forms.

A continuous forms printer can operate in a print room environment of 16.0° to 29.0°C (60.8° to 84.2°F) and a relative humidity of 20% to 80%. Expect degraded performance outside this range. Optimum forms processing performance is achieved at 18.3° to 23.8°C (65° to 75°F) and 40% to 60% relative humidity. This is also the best environment for storing forms. For best results on any given printer, you should not allow the relative humidity to fluctuate more than +/- 5% RH within this 40% - 60% recommended relative humidity range. Any fluctuations outside this +/- 5% RH tolerance range may require changes to printer settings, such as fuser temperature and preheat temperature.

Note: It is recommended that you store forms in the same environment that the printer will be operating for 72 hours or more before using the forms.

The maximum temperature to which forms should be exposed is 43.3°C (110°F), with relative humidity limits of 20% to 80%. Before using forms that are exposed to temperature extremes, allow them to acclimate in their sealed shipping container at the recommended temperatures for at least 72 hours.

The extended range of humidity limits in which the printer can operate (outside the recommended values) can be an adverse environment for storing forms. When this is the case, the forms should be moved to the printer work area shortly before use so that they can be printed on within a half hour.

Manufacturers strive to produce forms with uniform moisture content. Changes in moisture content during shipping, storage, and printing cause forms to expand and contract. This can cause permanent physical damage to the forms. Uneven moisture changes within the forms web can reduce form performance and print quality in the continuous forms printer.

If the forms are shipped or stored in an environment where the relative humidity is outside the guidelines, place a moisture barrier around each shipping container or group of containers. A moisture barrier is not recommended for preprinted forms, because it could have an adverse effect on the drying and curing of the printing ink.

Note: If opened or unprotected forms sit for long periods of time (for example, overnight) in environments that exceed 60% relative humidity, the moisture that is absorbed by the forms may cause print quality problems. If this happens, remove a portion of the forms from the top of the box or about 25 mm (1 inch) of forms from the roll and continue. If the problem persists, try another box or roll of forms.
Chapter 2. Selecting Forms

This chapter explains what you need to consider when you select paper-based forms for use in a continuous forms printer, including:

- Quality
- Weight and thickness
- Size
- Fusing ability
- Smoothness
- Summary of paper selection recommendations

Note: Form refers to either a continuous fanfold stack (box) of pages or a continuous roll of pages. Paper refers to a fiber-based material that is used to make forms. It is strongly recommended to test any forms before purchasing large quantities to assure satisfactory performance.

For information about preprinted forms, see Chapter 7, “Selecting Preprinted Forms,” on page 47.
Paper Quality

Bond paper that is made from at least 80% chemical wood pulp is recommended. Characteristics of this type of paper are normally within the ranges that work best in continuous forms printers. Experience also indicates that some papers with 25% cotton content are satisfactory. Some recycled papers are satisfactory when the paper parameters meet the recommended values (see "Summary of Form Selection Recommendations" on page 37).

Some paper suppliers offer recycled and blended papers. Recycled paper should conform to the fiber content characteristics (80% chemically pulped wood), and in all other ways conform to the paper quality recommendations. In addition, recycled paper should be free of any contaminants that may have been added to the paper in its previous application. Some of these contaminants can interfere with print quality, forms handling reliability, or toner adhesion.

Also, these contaminants can build up on various paper-path and print-element components and cause premature failure of these components. Blended papers of lower chemical wood pulp content may be desirable for economical and ecological reasons. Consider these papers carefully, as there may be an increased printer operating cost when processing these papers.

InfoPrint Solutions can assist customers in developing criteria for selecting forms for various applications; however, customers are responsible for initiating contact with form vendors and making the final selection. For additional information, see Chapter 1, "General Guidelines for Selecting Forms," on page 1.

Note: Provide the paper supplier with the form criteria outlined in this guide (see "Summary of Form Selection Recommendations" on page 37) and request forms that meet these recommendations.

For best performance, use forms that meet the recommendations in this guide. Forms that do not meet these recommendations may be acceptable if they run well and do not cause machine damage. If the use of a form causes printer damage, service calls, or part replacement (other than that caused from normal wear), InfoPrint Solutions will charge the customer for the time and material of all required service and parts.

Test recycled and blended papers for your applications, as described in Chapter 10, "Testing Forms and Applications," on page 77. This testing should consist of an initial test sample (2 to 4 boxes or one third roll) as well as follow-up testing. This follow-up testing should demonstrate the ability of the printer to perform for 30 to 60 days. Perform all initial testing of new forms by using your own application.

Note: Pay special attention to any effect the paper might have on printer components (such as the photoconductor drum and fuser), or on the environment (volatile emissions).
Consider the following paper characteristics when choosing paper-based forms:

- Paper exposed for about five minutes to a maximum fuser temperature of 204°C (400°F) and a pressure of 50 pounds per square inch (3.4 × 10⁵ N/m²) emits small amounts of some compounds that may cause odors. Examples of odor-causing compounds are sulphur compounds, chlorides, resin-base aerosols, and organics. Such emissions may create an industrial hygiene safety exposure (see Chapter 11, “Safety Practices,” on page 83).

- Coated paper and paper with a waxy surface can cause fusing failures.

- Embossed paper may cause wear on printer components, such as photoconductors and fuser rolls, and may reduce print quality.

- Paper containing synthetic resins, synthetic sizing agents, or plastics may cause fusing failures.

- Paper with poor surface stability and high amounts of sizing and filler can create paper dust. Excessive paper dust and chads (the residue separated from the carrier holes) can cause printer malfunctions and operator interventions. Filler should be limited to 15 to 20% by weight.

- Certain adhesives or coatings added to paper can soften or weaken the paper and give off vapors that cause discomfort to operators or service personnel. The additives should not be abrasive or have a tendency to chalk. Test these papers thoroughly before using large quantities.

- Certain salts or metallic compounds added to paper to reduce static charge can reduce print quality and cause printer contamination.

- Fillers and other additives may increase paper abrasiveness and cause excessive machine wear, reduced print quality, increased operator interventions, or fusing failures.

- Some papers produce large amounts of paper dust that can cause reduced print quality, increased operator interventions, and fusing failures. Sizing should hold the filler in the fibers.

- Forms with calender cuts, grease spots, loose sizing particles, wrinkles, voids, cuts, and tears can cause misfeeds and illegible characters.

- Moisture in forms can cause differences in the fuse grade quality and the final print appearance. To transfer enough toner to the form, the conductivity of the paper must be reasonably low. Increasing paper moisture causes an increase in paper conductivity and prevents the toner from being fused into the paper. The range of 3.7% to 5.3% moisture content, by weight, is best. For InfoPrint 4000 models with the High Humidity Feature (RPQ # 8B4291) installed, a range of 3.7% to 6.2% moisture content, by weight, is best.

 When testing the moisture content, measure paper immediately after removing it from the shipping carton so that the room environment does not affect the test results. For boxed paper, measure the moisture content at about 1 inch down from the top of the stack and 1 inch in from the edge of the forms. For rolled paper, cut 0.25 inch into the diameter of the roll and sample there.

Paper Dust Contamination

Paper dust is loose filler, starch, rosin, and fiber particles. In impact printing processes and nonimpact printing processes, some release of paper dust to the environment and some dust contamination within the printer is unavoidable. Speed and high-volume usage of continuous forms printers are factors that contribute to the buildup of paper dust on printer components.

The level of paper dust due to paper finishing and converting processes influences the need for operator cleanup and printer service. To reduce printer malfunctions and operator interventions, ensure that forms are free of loose or hanging chads (see Table 11 on page 37) and dust.

Using paper with good surface stability and low amounts of internal size and filler reduces contamination from the paper and helps improve fusing quality (see “Fusing Ability” on page 36).
Paper Weight and Thickness

Basis weight refers to the heaviness of paper. The definition of *basis weight* is:

- **In U.S. measurements:** The weight, in pounds, of 500 sheets of 17 inch by 22 inch bond paper.
 Standard U.S. basis weights are 16 to 42 pounds.
- **In metric measurements:** The weight, in grams, of one sheet of 1 square meter (m²) paper. Standard metric basis weights are 60 to 160 grams per square meter (g/m²).

Note: Weight tolerance for continuous forms printers conforms to conventional industry standards (±5%).

Forms with a basis weight of 60 g/m² (16 pounds) or less do not stack or feed as well as heavier forms.

Caliper describes and compares the thickness of paper. The maximum caliper for continuous forms printer forms is 0.20 mm (0.0079 in.).

To locate the correct basis weight for a particular printer model, locate the Machine type and model in the following table and proceed to the reference page.

<table>
<thead>
<tr>
<th>Machine Type</th>
<th>Model</th>
<th>Reference Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>InfoPrint 62</td>
<td>All</td>
<td>41</td>
</tr>
<tr>
<td>InfoPrint 3000</td>
<td>All</td>
<td>43</td>
</tr>
<tr>
<td>3900</td>
<td>All</td>
<td>45</td>
</tr>
<tr>
<td>InfoPrint 4000</td>
<td>IDx</td>
<td>30</td>
</tr>
<tr>
<td>InfoPrint 4000</td>
<td>IRx</td>
<td>30</td>
</tr>
<tr>
<td>InfoPrint 4000</td>
<td>ISx</td>
<td>30</td>
</tr>
<tr>
<td>InfoPrint 4100</td>
<td>TS3 & TD5/6 (Simplex and dual simplex)</td>
<td>Contact your InfoPrint Solutions sales representative for paper specifications based on the printer configuration.</td>
</tr>
<tr>
<td>InfoPrint 4100</td>
<td>TD5/6 (Duplex)</td>
<td>Contact your InfoPrint Solutions sales representative for paper specifications based on the printer configuration.</td>
</tr>
<tr>
<td>InfoPrint 4100</td>
<td>TS2 & TD3/4 (Simplex and dual simplex)</td>
<td>Contact your InfoPrint Solutions sales representative for paper specifications based on the printer configuration.</td>
</tr>
<tr>
<td>InfoPrint 4100</td>
<td>TD3/4 (Duplex)</td>
<td>Contact your InfoPrint Solutions sales representative for paper specifications based on the printer configuration.</td>
</tr>
<tr>
<td>InfoPrint 4100</td>
<td>TS1 & TD1/2 (Simplex and dual simplex)</td>
<td>Contact your InfoPrint Solutions sales representative for paper specifications based on the printer configuration.</td>
</tr>
<tr>
<td>InfoPrint 4100</td>
<td>TD1/2 (Duplex)</td>
<td>Contact your InfoPrint Solutions sales representative for paper specifications based on the printer configuration.</td>
</tr>
<tr>
<td>InfoPrint 4100</td>
<td>MS1 & MD1/2 (Simplex and dual simplex)</td>
<td>Contact your InfoPrint Solutions sales representative for paper specifications based on the printer configuration.</td>
</tr>
<tr>
<td>InfoPrint 4100</td>
<td>MD1/2 (Duplex)</td>
<td>Contact your InfoPrint Solutions sales representative for paper specifications based on the printer configuration.</td>
</tr>
<tr>
<td>InfoPrint 4100</td>
<td>HS3 & HD5/6 (Simplex and dual simplex)</td>
<td>Contact your InfoPrint Solutions sales representative for paper specifications based on the printer configuration.</td>
</tr>
<tr>
<td>Machine Type</td>
<td>Model</td>
<td>Reference Page</td>
</tr>
<tr>
<td>--------------------</td>
<td>--------------------------------</td>
<td>--</td>
</tr>
<tr>
<td>InfoPrint 4100</td>
<td>HD5/6 (Duplex)</td>
<td>Contact your InfoPrint Solutions sales representative for paper specifications based on the printer configuration.</td>
</tr>
<tr>
<td>InfoPrint 4100</td>
<td>HS2 & HD3/4 (Simplex and dual simplex)</td>
<td>Contact your InfoPrint Solutions sales representative for paper specifications based on the printer configuration.</td>
</tr>
<tr>
<td>InfoPrint 4100</td>
<td>HD3/4 (Duplex)</td>
<td>Contact your InfoPrint Solutions sales representative for paper specifications based on the printer configuration.</td>
</tr>
<tr>
<td>InfoPrint 4100</td>
<td>HS1 & HD1/2</td>
<td>30</td>
</tr>
<tr>
<td>InfoPrint 4100</td>
<td>PS1 & PD1/2</td>
<td>31</td>
</tr>
</tbody>
</table>

Chapter 2. Selecting Forms 29
InfoPrint 4000 Paper Weight and Thickness

InfoPrint 4000 Models ISx and IDx

Table 3. Basis weight recommendations for the InfoPrint 4000 Models IDx and ISx

<table>
<thead>
<tr>
<th>Media</th>
<th>Simplex/Dual Simplex</th>
<th>Duplex</th>
</tr>
</thead>
<tbody>
<tr>
<td>Paper</td>
<td>16 - 42 pounds</td>
<td>16 - 42 pounds</td>
</tr>
<tr>
<td></td>
<td>(60-160 g/m²)</td>
<td>(60-160 g/m²)</td>
</tr>
<tr>
<td>Labels (heaviest part of label)</td>
<td>54 pound (see “Labels” on page 56)</td>
<td>Not supported</td>
</tr>
</tbody>
</table>

Notes:
1. Basis weights between 28 and 42 lbs may require Heavy Weight Forms Feature FC 4930, on certain Models.
2. Postprocessor required for weights above 28 pounds.

InfoPrint 4000 Models IRx

Table 4. Basis weight recommendations for the InfoPrint 4000 Models IRx

<table>
<thead>
<tr>
<th>Media</th>
<th>Simplex/Dual Simplex</th>
<th>Duplex</th>
</tr>
</thead>
<tbody>
<tr>
<td>Paper</td>
<td>16 - 42 pounds</td>
<td>16 - 28 pounds</td>
</tr>
<tr>
<td></td>
<td>(60-160 g/m²)</td>
<td>(60-105 g/m²)</td>
</tr>
</tbody>
</table>

InfoPrint 4100 Paper Weight and Thickness

For InfoPrint models HS2 & HD3/4, HS3 & HD5/6, MS1 & MD1/2, TS1 & TD1/2, TS2 & TD3/4, TS3 & TD5/6 contact your InfoPrint Solutions sales representative for paper specifications based on the printer configuration.

InfoPrint 4100 Models HS1 & HD1/2

Note: Labels are not supported on HS1 & HD1/2 models.

Table 5. Basis weight recommendations for the InfoPrint 4100 Models HS1 and HD1/HD2

<table>
<thead>
<tr>
<th>Media</th>
<th>Simplex/Dual Simplex</th>
<th>Duplex</th>
</tr>
</thead>
<tbody>
<tr>
<td>Paper (tractored & tractorless)</td>
<td>12-42 pounds</td>
<td>12-42 pounds</td>
</tr>
<tr>
<td></td>
<td>(45-160 g/m²)</td>
<td>(45-160 g/m²)</td>
</tr>
</tbody>
</table>

Notes:
1. External Stacker or Postprocessor required for weights below 16 pounds and above 28 pounds.
2. Internal stacking is not supported for tractorless printing.
InfoPrint 4100 Models PS1 & PD1/2

Note: Labels are not supported on PS1 & PD1/2 models.

Table 6. Basis weight recommendations for the InfoPrint 4100 Models PS1 and PD1/PD2

<table>
<thead>
<tr>
<th>Media</th>
<th>Simplex/Dual Simplex</th>
<th>Duplex</th>
</tr>
</thead>
<tbody>
<tr>
<td>Paper (tractored & tractorless)</td>
<td>12-28 pounds (45-105 g/m²)</td>
<td>12-28 pounds (45-105 g/m²)</td>
</tr>
</tbody>
</table>

Notes:
1. Postprocessor required for weights below 16 pounds.
2. Internal stacking is not supported for tractorless printing.
The tables below may not include models changed or added after the release of this publication. To verify the form sizes your printer supports, please review the appropriate *Introduction and Planning Guide* or *Planning and Configuration Guide* for the printer or consult your marketing representative.

A continuous forms printer is designed to use either fanfold (box) or roll-feed, single-ply forms with tractor holes in both outside margins. Some models are also designed to accept tractorless forms. These forms must conform to the width, length, and spacing limits that are defined in the following tables. *Width* refers to the distance between the outer edges, in the tractor-hole-to-tractor-hole direction. *Length* is the distance between horizontal perforations.

Always test applications that have dimensions that are not within the ranges that are given in the following tables. See *Chapter 10, “Testing Forms and Applications,” on page 77* for more information.

To locate the correct form dimensions for a particular printer model, locate the Machine type and model in the following table and proceed to the reference page.

<table>
<thead>
<tr>
<th>Machine Type</th>
<th>Model</th>
<th>Reference Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>InfoPrint 62</td>
<td>All</td>
<td>41</td>
</tr>
<tr>
<td>InfoPrint 3000</td>
<td>All</td>
<td>43</td>
</tr>
<tr>
<td>InfoPrint 3900</td>
<td>All</td>
<td>45</td>
</tr>
<tr>
<td>InfoPrint 4000</td>
<td>IDx</td>
<td>33</td>
</tr>
<tr>
<td>InfoPrint 4000</td>
<td>IRx</td>
<td>33</td>
</tr>
<tr>
<td>InfoPrint 4000</td>
<td>ISx</td>
<td>33</td>
</tr>
<tr>
<td>InfoPrint 4100</td>
<td>HS1 & HD1/2</td>
<td>34</td>
</tr>
<tr>
<td>InfoPrint 4100</td>
<td>MS2 & MD1/2</td>
<td>34</td>
</tr>
<tr>
<td>InfoPrint 4100</td>
<td>HS2 & HD3/4</td>
<td>34</td>
</tr>
<tr>
<td>InfoPrint 4100</td>
<td>HS3 & HD5/6</td>
<td>34</td>
</tr>
<tr>
<td>InfoPrint 4100</td>
<td>PS1 & PD1/2</td>
<td>34</td>
</tr>
<tr>
<td>InfoPrint 4100</td>
<td>TS1 & TD1/2</td>
<td>34</td>
</tr>
<tr>
<td>InfoPrint 4100</td>
<td>TS2 & TD3/4</td>
<td>34</td>
</tr>
<tr>
<td>InfoPrint 4100</td>
<td>TS3 & TD5/6</td>
<td>34</td>
</tr>
</tbody>
</table>
InfoPrint 4000 Forms Dimensions

Table 7. Required Dimensions for InfoPrint 4000 Models ID1/ID2, ID3/ID4, ID5/ID6, IR1/IR2, IR3/IR4

<table>
<thead>
<tr>
<th>Dimension</th>
<th>Minimum</th>
<th>Maximum</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>mm</td>
<td>inches</td>
</tr>
<tr>
<td>Width (Duplex)</td>
<td>229±3.0</td>
<td>9.0±0.118</td>
</tr>
<tr>
<td>Width (Dual Simplex)</td>
<td>204±3.0</td>
<td>8.0±0.118</td>
</tr>
<tr>
<td>Length</td>
<td>76.2 ±0.3</td>
<td>3.0 ±0.013</td>
</tr>
<tr>
<td>Fold Spacing</td>
<td>178 ±0.3</td>
<td>7.0 ±0.013</td>
</tr>
</tbody>
</table>

Notes:
1. Maximum form length is 711 ±0.3 mm (28 ±0.013 in.) with the InfoPrint Forms Management feature and preprocessing and postprocessing devices.
2. Maximum form length is 1372 ±0.3 mm (54 ±0.013 in.) with the InfoPrint Signature Page feature and preprocessing and postprocessing devices.

Table 8. Required Dimensions for InfoPrint 4000 Models IS1, IS2

<table>
<thead>
<tr>
<th>Dimension</th>
<th>Minimum</th>
<th>Maximum</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>mm</td>
<td>inches</td>
</tr>
<tr>
<td>Width</td>
<td>204±3.0</td>
<td>8.0±0.118</td>
</tr>
<tr>
<td>Length</td>
<td>76.2 ±0.3</td>
<td>3.0 ±0.013</td>
</tr>
<tr>
<td>Fold Spacing</td>
<td>178 ±0.3</td>
<td>7.0 ±0.013</td>
</tr>
</tbody>
</table>

Notes:
1. Maximum form length is 711 ±0.3 mm (28 ±0.013 in.) with the InfoPrint Forms Management feature and preprocessing and postprocessing devices.
2. Maximum form length is 1372 ±0.3 mm (54 ±0.013 in.) with the InfoPrint Signature Page feature and preprocessing and postprocessing devices.
InfoPrint 4100 Forms Dimensions

Table 9. Required Dimensions for InfoPrint 4100 Models

<table>
<thead>
<tr>
<th>Dimension</th>
<th>Minimum</th>
<th>Maximum</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>mm</td>
<td>inches</td>
</tr>
<tr>
<td>Width (Tractored)</td>
<td>210.8 ±3.0</td>
<td>8.3 ±0.118</td>
</tr>
<tr>
<td>Width (Tractorless)</td>
<td>203.2 ±3.0</td>
<td>8.0 ±0.118</td>
</tr>
<tr>
<td>Length (Tractored)</td>
<td>76.2 ±0.3</td>
<td>3.0 ±0.013</td>
</tr>
<tr>
<td>Length (Tractorless)</td>
<td>76.2±0.3</td>
<td>3.0±0.013</td>
</tr>
<tr>
<td>Fold Spacing</td>
<td>178 ±0.3</td>
<td>7.0 ±0.013</td>
</tr>
</tbody>
</table>

Notes:
1. Perforated forms (boxed) may be used with the InfoPrint 4100 with the tractor engaged. Maximum 408 mm (16 in.) stack from floor to sensor. Output stack height is limited to 356 mm (14 in.). If 431.8 mm (17 in.) forms are used, the output stack height is limited to 152.4 mm (6 in.).
2. Tractorless printing requires preprocessing and postprocessing devices. Also, there is no internal stacker support for tractorless printing.
3. There are limitations to the maximum page size that can be addressed by some application programs. If you have a requirement for a page larger than 576.5 mm (22.7 in.), it is recommended that you contact your marketing representative.
4. Lengths and fold spacing must be in 12.7 mm (0.5 in.) or 8.5 mm (0.3 in.) intervals.
5. Forms shorter than 178 mm (7.0 in.) are printed in multiples and use page (non-folding) perforations to define pages.
6. Optional features allow some continuous forms printers to print on forms up to 1372 mm (54 in.) in length. Consult your marketing representative for more information about the signature page feature.
7. When printing on form lengths greater than 17 inches, the printer stacker (if present) must be disabled, and the printer must have suitable postprocessing equipment installed.
8. See Chapter 4, “InfoPrint 62 Forms Specifications,” on page 41 for the required dimensions for InfoPrint 62 printers.
Smoothness

Smoothness is the evenness of the surface of the form. Rough forms tend to cause variable print darkness, loss of fine lines, and poor toner adhesion. Forms that are too smooth may cause jams in the printer. In general, the Advanced Function Printers work better with smoother forms than do previous printers.

Form smoothness is a function of:
- The type of material used to make the form
- The processing of the material

For best operation of continuous forms printers, the smoothness of the form should be between 70 and 150 Sheffield units; (70 to 220 Bendtsen units).

Table 10 provides information on form smoothness.

Table 10. Form smoothness

| Type | Recommended Smoothness *
<table>
<thead>
<tr>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>(Sheffield Units)</td>
</tr>
<tr>
<td>16 pound high-bulk bond paper</td>
<td>200 + Not Recommended</td>
</tr>
<tr>
<td>16 or 18 pound high-bulk bond paper</td>
<td>70 to 200 Internal Reports</td>
</tr>
<tr>
<td>20 pound bond paper</td>
<td>70 to 200 Internal reports</td>
</tr>
<tr>
<td>20 pound bond paper</td>
<td>70 to 150 Statements/proposals Invoices/bills</td>
</tr>
<tr>
<td>20 pound specialty paper</td>
<td>70 to 120 Quality documents</td>
</tr>
<tr>
<td>28 to 42 pound bond paper</td>
<td>70 to 120 Direct mail application</td>
</tr>
</tbody>
</table>

* Smoothness less than 70 Sheffield Units is not recommended for any weight form.

Note: Test the form selected for each application using the appropriate application before ordering large quantities of the form.

For duplex printing applications, both sides of the form must fall within the values listed in “Form Smoothness table.”

High-resolution printers perform better with paper that is smoother than those specified for other continuous forms printers. See your marketing representative for specific paper vendor recommendations to ensure that your high-resolution printer produces the best possible print quality for your application. For additional information, see Chapter 3, “Forms Recommendations for High-Resolution Printers,” on page 39.
Fusing Ability

Fusing refers to the process by which toner is melted onto a form to create a permanent bond. Selecting forms designed for electrophotographic printing can enhance fusing quality, and therefore print quality. The information in this section can help you choose paper-based forms that can achieve high-quality fusing. Form testing is always a necessary part of the selection process.

The best fusing is achieved when toner particles adhere to the paper surface, to the individual fibers that make up the paper structure, and to other toner particles. Depending on the model of the printer, either heat and pressure together, or heat alone is used to fuse the toner with the paper fibers.

The ingredients used in making paper have a significant effect on this process. Some materials resist penetration and adherence of the toner.

The fillers and sizing agents used in paper may vary in different countries, because the raw materials that are available and the cost of those materials vary. Even within a country or geographic area, differences in paper-finishing agents and sizing procedures used by each mill may cause variations in fusing quality. Similarly, papers of different grades from the same mill (for example, bond, uncoated offsets, and ledger) may also have different fusing characteristics.

Good fusing papers contain minimal amounts of the organic additives traditionally used for sizing printing and writing paper (slack rosin-starch sheets). Use paper treated to resist liquid penetration (hard sizing) only after thoroughly testing it for fusing quality. The following factors can have a significant effect on fusing quality:

- **Surface Sizing**
 Sizing agents affect contact between toner and paper. Avoid paper treated with synthetic sizing agents, such as alkylketene dimer or alkenylsuccinic anhydride. These sizing agents may affect fusing quality. Keep overall sizing low.

- **Smoothness**
 In general, a printer fusing system works better with smoother papers. Rough papers tend to reduce fuse quality.
 For duplex printing applications, both sides of the paper must fall within the values that are listed in the "Form Smoothness table" on page 35.

- **Paper Weight**
 Lighter-weight paper improves heat conduction from under the paper to the unfused toner on top of the paper at the preheat platen. See Table 2 on page 20 for recommended paper weights for various sheet lengths.

- **Moisture Content (Shipping)**
 Because the printer fusing temperatures can vaporize moisture in the paper, excessive moisture content prevents the paper from heating adequately for fusing. Fusing and paper-handling performance is best with forms that are used immediately after being removed from the shipping carton. (The moisture content is generally 3.7% to 5.3% when shipped from the manufacturer.)

Controlling these characteristics improves fusing performance for many of the forms typically used in continuous forms printers; however, only actual testing can determine the exact effect of any form on fusing performance.
Table 11 summarizes recommendations that can help you and your forms supplier choose the forms that are most suitable for your continuous forms printer. For packaging recommendations, see “Packaging” on page 23.

See Chapter 8, “Selecting Special-Purpose Materials,” on page 53 for information and recommendations concerning special forms, such as preprinted, prepunched, and perforated forms.

InfoPrint Solutions recommends using 75-g/m² (20-pound) continuous form bond, and that you initially test a small sample of supplies in your continuous forms printer before you purchase production quantities for a given application.

Table 11. Forms Selection Recommendations - Summary

<table>
<thead>
<tr>
<th>Parameter</th>
<th>Test Method</th>
<th>Recommendation</th>
</tr>
</thead>
<tbody>
<tr>
<td>Basis Weight (Preferred)</td>
<td>D 464, ISO 536 (see notes 2 and 3)</td>
<td>20 pound (75 g/m²) (see note 7)</td>
</tr>
<tr>
<td>Acceptable Basis-Weight Range</td>
<td></td>
<td>16–42 pound (60 g/m²–160 g/m²) for simplex and duplex applications using tractored forms</td>
</tr>
<tr>
<td>Caliper</td>
<td>T 411, ISO 534 (see notes 1 and 3)</td>
<td>0.0032 – 0.0079 in. (0.08 – 0.20 mm)</td>
</tr>
<tr>
<td>Stiffness (Taber)</td>
<td>T 489 (see note 1)</td>
<td>17–19 pound (64–72 g/m²)</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Machine direction: 1.2 Taber units</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Cross direction: 0.5 Taber units</td>
</tr>
<tr>
<td>Coefficient of Static Friction</td>
<td>D 1894 (see notes 2 and 4)</td>
<td>0.45–0.65</td>
</tr>
<tr>
<td>Porosity (Gurley)</td>
<td>UM 524, ISO 3687 (see notes 1 and 3)</td>
<td>10 sec/100 ml minimum</td>
</tr>
<tr>
<td>Fiber Composition</td>
<td></td>
<td>80% chemical wood pulp or wood-free pulp</td>
</tr>
<tr>
<td></td>
<td></td>
<td>(The European term wood-free pulp is synonymous with the American term chemical wood pulp either sulphite or kraft).</td>
</tr>
<tr>
<td>Color</td>
<td></td>
<td>White or pastel colors</td>
</tr>
<tr>
<td>Ash Content</td>
<td>T 413, ISO 2144 (see notes 1 and 3)</td>
<td>18% Maximum</td>
</tr>
<tr>
<td>Filler</td>
<td></td>
<td>The amount and type of filler should be chosen to produce a paper that has low abrasive and dusting characteristics. In general, low filler percentage and small particle size are best. Note: Too much filler can negatively impact fuse grade.</td>
</tr>
<tr>
<td>Surface Sizing</td>
<td></td>
<td>Starch</td>
</tr>
<tr>
<td>Internal Sizing</td>
<td></td>
<td>Acid rosin or synthetic (alkylketene dimer or alkenyl-succinic anhydride)</td>
</tr>
<tr>
<td>Moisture Content</td>
<td>D 644, ISO 287 (see notes 2 and 3)</td>
<td>3.7 – 5.3% (or 3.7% to 6.2% for InfoPrint 4000 models with the High Humidity Feature RPQ # 8B4291 installed) (see note 6)</td>
</tr>
</tbody>
</table>
Table 11. Forms Selection Recommendations - Summary (continued)

<table>
<thead>
<tr>
<th>Parameter</th>
<th>Test Method</th>
<th>Recommendation</th>
</tr>
</thead>
<tbody>
<tr>
<td>Surface Resistivity</td>
<td>D 257 (see notes 2 and 5)</td>
<td>1x10^{10} – 1x10^{12} ohms (see note 6)</td>
</tr>
<tr>
<td>Chad</td>
<td></td>
<td><25 loose chads per 2500 feet of forms; no hanging chads (all holes fully punched). No agglomerated chads.</td>
</tr>
<tr>
<td>Paper Formation</td>
<td>Visual</td>
<td>The paper should be uniform in appearance when it is viewed by holding a light source behind the paper.</td>
</tr>
</tbody>
</table>

All tests were conducted per TAPPI 402 or ISO 187, except moisture content, which pertains to the forms as packaged.

Notes:
4. Use 127 mm per minute (5.0 in. per minute) pull rate.
5. Isolate the test specimen from the metal backing plate with a piece of smooth, nonconductive polyester film, at least 0.254 mm (0.010 in.) thick. Use 100 volts.
6. The following form parameters have been found to be very important for achieving the best possible print quality on high-resolution printers:
 - Paper formation
 - Uniformity of these properties across the page
 - Electrostatic properties
 - Moisture content
 - Paper smoothness (high-resolution printers perform better with smoother paper).
 - Paper thickness
 Ask your marketing representative for specific form vendor recommendations to ensure that your high-resolution printer produces the best possible print quality for your application. For additional information, see Chapter 3, “Forms Recommendations for High-Resolution Printers,” on page 39.
7. The maximum form weight for 324-PPM printers is 28 pounds.
Chapter 3. Forms Recommendations for High-Resolution Printers

Various printers print with a resolution greater than 300 pel. (The InfoPrint 4000 and 4100 models, which print with a resolution of 480 or 600 pel, are examples.) For the purposes of this document, any printer that prints with a resolution greater than 300 pel is considered a high-resolution printer.

High quality forms must be used in high-resolution printers to ensure excellent print quality. This chapter provides forms recommendations for achieving the performance that high-resolution printers are designed to provide. The recommendations in this chapter are in addition to the ones that are covered in Chapter 2, "Selecting Forms," on page 25.

To ensure that the forms you purchase for use on high-resolution printers is suitable for your application, the following is strongly recommended:

- Request the assistance of your forms supplier to select the proper forms.
- Test your application on a sample of a proposed forms before ordering large quantities.

The following form parameters have been found to be very important for achieving the best possible print quality in high-resolution printers:

- Form formation
- Uniformity of the following properties across the page:
 - Electrostatic properties
 - Moisture content
 - Form smoothness

"Form Smoothness table" on page 35 provides information on form smoothness for all continuous forms printers including high-resolution printers.
Chapter 4. InfoPrint 62 Forms Specifications

The InfoPrint 62 printer can print on a wide variety of media. The supported media includes:
- Fanfold forms
- Pressure sensitive forms (polyester, polypropylene)
- Special purpose labels
- Vinyl

Table 12. InfoPrint 62 — Forms Specifications

<table>
<thead>
<tr>
<th>Specification</th>
<th>Minimum</th>
<th>Maximum</th>
</tr>
</thead>
<tbody>
<tr>
<td>Length (process direction)</td>
<td>177.8 ±0.3 mm (7.0 ±0.013 in.)</td>
<td>558.8 ±0.3 mm (22 ±0.013 in.)</td>
</tr>
<tr>
<td>Length (with power stacker)</td>
<td>177.8 ±0.3 mm (7.0 ±0.013 in.)</td>
<td>304.8 ±0.3 mm (12 ±0.013 in.)</td>
</tr>
<tr>
<td>Width</td>
<td>177.8 ±3.0 mm (7.0 ±0.118 in.)</td>
<td>406.4 ±4.0 mm (16 ±0.157 in.)</td>
</tr>
<tr>
<td>Weight - Bond</td>
<td>64 g/m² (17 lb/ream)</td>
<td>165 g/m² (44 lb/ream)</td>
</tr>
<tr>
<td>Weight - Letter Basis</td>
<td>64 g/m² (17 lb/ream)</td>
<td>204 g/m² (54 lb/ream)</td>
</tr>
<tr>
<td>Weight - Label</td>
<td>71 g/m² (44 lb/ream)</td>
<td>204 g/m² (125 lb/ream)</td>
</tr>
</tbody>
</table>
Shipping, Storage, and Operating Environment

The following information applies to both fanfold (box) and continuous roll-feed forms.

Keep forms in their sealed shipping container (the box or wrapped roll) until they are loaded into the printer. The sealed shipping container lessens moisture absorption during shipment from the supplier and during storage. Variations in temperature and humidity affect form size, weight, and flatness, which in turn affect print quality and printer performance.

Store the sealed shipping containers off the floor (on a pallet, for example). In the case of fanfold forms, you can usually stack boxes up to six high, with each box squarely set on the one underneath. Do not place additional weight on the stack. When stacking boxes, consider the strength and stability of the boxes and the weight of the paper.

The InfoPrint 62 printer can operate in an environment of 16.0° to 29.0°C (60.8° to 84.2°F) and a relative humidity of 20% to 80%. Expect degraded performance outside this range. The best forms processing performance is achieved at 18.4° to 23.8°C (65° to 75°F) and a relative humidity of 40% to 60%.

This is also the recommended condition for storing forms. If the forms are stored in an environment with relative humidity above 60% they should remain sealed with an adequate moisture barrier.

The maximum temperature to which forms should be exposed is 43.3°C (110°F), with relative humidity limits of 20% to 80%. Before using forms that are exposed to temperature extremes, allow them to acclimate in their sealed shipping container at the recommended temperatures for at least 72 hours.

The range of humidity limits within which the printer can operate is greater than the recommended operating limits for forms. If the printer operates at a relative humidity level that is outside the best forms processing environment, the forms should not be exposed to this environment for more than 12 hours. If the forms lack an adequate moisture barrier, they should be used within ½ hour after being moved to the printer work area.

Manufacturers strive to produce forms with uniform moisture content. Changes in moisture content during shipping, storage, and printing cause forms to expand and contract. This can cause permanent physical damage to the forms. Uneven moisture changes within the forms web can reduce form performance and print quality in the continuous forms printers. If the forms are shipped or stored in an environment where the relative humidity is outside the guidelines, place a moisture barrier around each shipping container or group of containers. A moisture barrier may have an adverse effect on the drying or curing of the ink on preprinted forms. Many manufacturers of such forms publish their own storage guidelines.

Note: If opened or unprotected paper sits for long periods of time (for example, overnight) in environments that exceed 60% relative humidity, the moisture that is absorbed by the paper may cause print quality problems. If this happens, remove a portion of the forms from the top of the box or about 25 mm (1 in.) of forms from the roll and continue. If the problem persists, you should try another box or roll of forms.
Chapter 5. InfoPrint 3000 Forms Specifications

The InfoPrint 3000 printer can print on a wide variety of media. The supported media includes:
- Fanfold forms
- Pressure sensitive forms (polyester)
- Labels

Note: Please contact your Marketing Representative to discuss your label requirements. It is also recommended that you have InfoPrint Solutions test or review the labels you intend to use before you order large amounts.

InfoPrint 3000 forms dimensions

Table 13. Required Dimensions for InfoPrint 3000 Models ES1 and ED1/ED2

<table>
<thead>
<tr>
<th>Dimension</th>
<th>Minimum</th>
<th>Maximum</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>mm</td>
<td>inches</td>
</tr>
<tr>
<td>Width (Duplex)</td>
<td>229 ±3.0</td>
<td>9.0 ±0.118</td>
</tr>
<tr>
<td>Width (ES1 and Dual Simplex)</td>
<td>204 ±3.0</td>
<td>8.0 ±0.118</td>
</tr>
<tr>
<td>Length</td>
<td>76.2 ±0.3</td>
<td>3.0 ±0.013</td>
</tr>
<tr>
<td>Fold Spacing</td>
<td>178 ±0.3</td>
<td>7.0 ±0.013</td>
</tr>
</tbody>
</table>

Notes:
1. The maximum print width is 432 mm (17 in.).
2. Forms that are less than 178 mm (7 in.) in length are folded in multiples of 7 in. or greater (that is forms that are 3.5 in. are folded every 7 in.; forms that are 3 in. are folded every 9 in.) For more information about forms lengths, see "Forms Length and Width Controls" in Chapter 3 and Appendix A "Valid Form Length in Inches" in the InfoPrint 3000 Operator's Guide.
3. Maximum form length when using the on-board stacker is 356±0.3 mm (14±0.013 in.)
4. Maximum form length when using preprocessing and postprocessing devices is 711 ±0.3 mm (28±0.013 in.).

To use forms longer than 711 mm (17 in.) the forms length must be enabled under the Special Features option of the Options pull-down menu. Be aware that when longer forms are in use, there can be an impact on performance, especially on more complex jobs that can result in the printer back-hitching. Additional memory can help minimize this impact. When longer forms are no longer in use, the feature should be disabled for more efficient printer operation. For more information see Appendix C "Special Features" InfoPrint 3000 Operator's Guide.

InfoPrint 3000 basis weights

Table 14. Basis weight recommendations for the InfoPrint 3000 Models ES1 and ED1/ED2

<table>
<thead>
<tr>
<th>Model</th>
<th>Mode</th>
<th>Basis Paper Weights</th>
</tr>
</thead>
<tbody>
<tr>
<td>ES1</td>
<td>Simplex</td>
<td>16 - 42 pounds (60 -160 g/m²)</td>
</tr>
<tr>
<td>ED1/ED2</td>
<td>Duplex</td>
<td>16 - 28 pounds (60 -105 g/m²)</td>
</tr>
<tr>
<td>ED1/ED2</td>
<td>Dual Simplex</td>
<td>16 - 42 pounds (60 -160 g/m²)</td>
</tr>
</tbody>
</table>
3900 Forms Dimensions

Table 15. Required Dimensions for 3900 Models 001, D01, D02 Simplex

<table>
<thead>
<tr>
<th>Dimension</th>
<th>Minimum</th>
<th>Maximum</th>
</tr>
</thead>
<tbody>
<tr>
<td>Width</td>
<td>165 ±3.0</td>
<td>406 ±4.0</td>
</tr>
<tr>
<td>Length</td>
<td>76.2 ±0.3</td>
<td>356 ±0.3</td>
</tr>
<tr>
<td>Fold Spacing</td>
<td>178 ±0.3</td>
<td>356 ±0.3</td>
</tr>
</tbody>
</table>

Table 16. Required Dimensions for 3900 Models D01, D02 Duplex

<table>
<thead>
<tr>
<th>Dimension</th>
<th>Minimum</th>
<th>Maximum</th>
</tr>
</thead>
<tbody>
<tr>
<td>Width</td>
<td>229 ±3.0</td>
<td>406 ±4.0</td>
</tr>
<tr>
<td>Length</td>
<td>76.2 ±0.3</td>
<td>356 ±0.3</td>
</tr>
<tr>
<td>Fold Spacing</td>
<td>178 ±0.3</td>
<td>356 ±0.3</td>
</tr>
</tbody>
</table>

Table 17. Required Dimensions for Models 3900 0W1, 0W3, DW1 Simplex

<table>
<thead>
<tr>
<th>Dimension</th>
<th>Minimum</th>
<th>Maximum</th>
</tr>
</thead>
<tbody>
<tr>
<td>Width</td>
<td>229 ±3.0</td>
<td>457 ±4.0</td>
</tr>
<tr>
<td>Length</td>
<td>76.2 ±0.3</td>
<td>356 ±0.3</td>
</tr>
<tr>
<td>Fold Spacing</td>
<td>178 ±0.3</td>
<td>356 ±0.3</td>
</tr>
</tbody>
</table>

Table 18. Required Dimensions for 3900 Model DW2 Simplex, DW1 and DW2 Duplex

<table>
<thead>
<tr>
<th>Dimension</th>
<th>Minimum</th>
<th>Maximum</th>
</tr>
</thead>
<tbody>
<tr>
<td>Width</td>
<td>305 ±3.0</td>
<td>457 ±4.0</td>
</tr>
<tr>
<td>Length</td>
<td>76.2 ±0.3</td>
<td>356 ±0.3</td>
</tr>
<tr>
<td>Fold Spacing</td>
<td>178 ±0.3</td>
<td>356 ±0.3</td>
</tr>
</tbody>
</table>
Table 19. Required Dimensions for InfoPrint 3900 Models DR1/DR2 Duplex

<table>
<thead>
<tr>
<th>Dimension</th>
<th>Minimum</th>
<th>Maximum</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>mm</td>
<td>inches</td>
</tr>
<tr>
<td>Width</td>
<td>305 ±3.0</td>
<td>12.0 ±0.118</td>
</tr>
<tr>
<td>Length</td>
<td>76.2 ±0.3</td>
<td>3.0 ±0.013</td>
</tr>
<tr>
<td>Fold Spacing</td>
<td>178 ±0.3</td>
<td>7.0 ±0.013</td>
</tr>
</tbody>
</table>

3900 Basis Weight

<table>
<thead>
<tr>
<th>Model</th>
<th>Mode</th>
<th>Basis Weight</th>
</tr>
</thead>
<tbody>
<tr>
<td>0W1</td>
<td>Simplex</td>
<td>60-160 g/m² (16-42 lb)</td>
</tr>
<tr>
<td>0W1 with 310 IPM Feature</td>
<td>Simplex</td>
<td>60-105 g/m² (16-28 lb)</td>
</tr>
<tr>
<td>0W3</td>
<td>Simplex</td>
<td>60-160 g/m² (16-42 lb)</td>
</tr>
<tr>
<td>D01/D02</td>
<td>Duplex</td>
<td>68-105 g/m² (18-28 lb)</td>
</tr>
<tr>
<td>D01/D02 Dual Simplex</td>
<td></td>
<td>60-160 g/m² (16-42 lb) * see note below</td>
</tr>
<tr>
<td>DW1/DW2</td>
<td>Duplex</td>
<td>68-105 g/m² (18-28 lb)</td>
</tr>
<tr>
<td>DW1/DW2 Dual Simplex</td>
<td></td>
<td>60-160 g/m² (16-42 lb) * see note below</td>
</tr>
<tr>
<td>DR1/DR2</td>
<td>Duplex</td>
<td>68-105 g/m² (18-28 lb)</td>
</tr>
</tbody>
</table>

Notes:
1. The maximum paper weight for duplex printers running in simplex mode should be 105 g/m² (28 lb) on Printer 2 and 160 g/m² (42 lb) on Printer 1.
Chapter 7. Selecting Preprinted Forms

This chapter describes important characteristics of inks and papers that you should consider when selecting preprinted forms. A preprinted form is one on which ink has been applied before the printer prints on it. This includes mill and converter markings in the carrier strip area.

In some cases, it may be possible to use Advanced Function Printing capabilities instead of preprinted forms. Refer to "Electronic Overlays" on page 50 for information about an alternative to preprinted forms.
General Recommendations

Continuous forms printers accept a variety of inks and papers for preprinted forms. When ordering preprinted forms, specify that the forms are intended for use in a continuous forms printer.

In addition, the following requirements and recommendations can help you use preprinted forms more effectively and help maintain reliable printer performance:

- The inks and papers that are used in preprinted forms must not emit vapors into the environment at levels that create an industrial hygiene safety exposure.
- Inks with phthalate esters in any concentration should not be used.
- Penetrating inks with high residual amounts of petroleum-based solvents should not be used.
- Adequate ventilation must be supplied, especially when using inks and papers that may emit hazardous materials during printing.
- The forms must allow toner to adhere to the paper.
- The forms and preprinted information must not interfere with the normal function of paper path sensors.
- Brightening agents such as titanium should be avoided, especially at high levels to avoid print quality and fusing problems.
- Clear zones are reserved areas that are used for side verify marks and forms identification bar codes on preprinted forms. If you are using side verify marks, a clear zone must be maintained for printing the marks; these marks ensure front-to-back registration and page-to-page registration. When printing in duplex mode using preprinted forms, a 0.25" clear zone must be maintained over the entire length of forms for printer 1 to printer 2 alignment. This clear zone should be in the same location where side verify and registration marks are located. Only functional marks, such as the Top of Form marks or forms ID barcodes, are allowed in this clear zone. See “Standards for Clear Zones” on page 4 for more information about required clear zones.
- The forms must be printed with heat-resistant inks that are formulated to withstand the fusing temperature and the mechanical action of the printer.
- Ultraviolet (UV) inks are recommended for optimum overall performance. UV inks cure faster and are less likely to transfer to the printer hardware.
- UV inks and soy-based inks should be screened to a level of 50% to reduce the chance of printer contamination.
- After preprinting, allow sufficient time for the ink to cure (dry) before processing the forms. A minimum of 72 hours is recommended. Some inks with different formulations may require additional drying time. If inks are not cured correctly, they will transfer to the components — especially in the fuser area — causing print quality problems, premature parts replacement, and added maintenance.
- The final forms design should be tested on a continuous forms printer to verify that the layout is accurate and that the paper and ink are compatible with the printing process.
- Select paper with pH (hydrogen-ion concentration) for correct ink curing, based on ink and printing conditions.
- Avoid using paper that is smoother than 70 Sheffield Units.
- Avoid preprinted forms that are embossed or thickened.
- If tinting inks are used, enhance fusing quality by screening, or leave the area uninked where the continuous forms printer will print.
- Avoid solid preprinted areas on forms, particularly reverse headings, and logos. To decrease the amount of applied ink, screen the deeper-hued ink to obtain the desired color. These areas can usually be screened to 50% or less without losing their identity.
- Avoid vertical lines. They are more susceptible to ink transfer than horizontal lines. If vertical lines cannot be eliminated, screen them, if possible.
- Store forms within the environmental limits that are described in “Shipping, Storage, and Operating Environment” on page 24 to allow the best drying and curing of the ink. Also, do not use a moisture barrier around cartons during the ink-curing period.
Vapor Emissions from Preprinted Forms

Adequate ventilation must be supplied, especially when using inks and papers that may emit hazardous materials during printing.
Electronic Overlays

Advanced Function Presentation (AFP) lets you start with a plain piece of paper and print on it virtually any combination of fonts, lines, and images. AFP also allows you to define and store collections of constant data that can be combined with variable data at print time. This stored constant data is known as an electronic overlay. Instead of using preprinted forms, you can use electronic overlays to put boxes, lines, shading, text, and logos on a page.

Using electronic overlays can result in significant savings in forms cost and storage space, as well as in operator time required to load and unload preprinted forms. If a design needs to be changed, electronic overlays can be changed more quickly and without paying scrap charges. In addition, using electronic overlays eliminates concerns about the papers and inks used in preprinted forms.

Forms for Advertising

Forms that are used in advertising often contain special paper and deep-hued, multicolored inks applied in larger amounts than is advisable for use in a continuous forms printer. Sometimes these forms create objectionable emissions and cause ink to transfer to printer components.

Multicolored, heavily inked forms sometimes give off a pungent odor at room temperature. The odor increases when the forms are processed in a continuous forms printer.

Note: Do not use forms that emit vapors that cause discomfort to operators and service personnel.

Improved ventilation can reduce the level of airborne contaminants (see Chapter 11, "Safety Practices," on page 83). Test any applications involving heavily inked preprinted forms before using them for production jobs.
Forms for Negotiable Documents

Special papers and inks are sometimes used for negotiable documents, such as checks, that are intended for use on impact printers. In general, the intent is to improve the anti-fraud characteristics of the documents. Other safeguards, such as unique character sets and type styles, are not often used on impact printers because of increased costs and reduced printer throughput.

With a continuous forms printer, some safety inks and papers tend to inhibit thorough fusing of the toner onto the paper fibers. Uniquely styled characters are easy to develop, and may be an acceptable alternative to special forms.

Note: Test all applications of this type to make sure your output satisfies auditing, security, and environmental requirements.

The following information reflects known practices for negotiable documents or is based on test results.

- In marginal fusing situations, use 75-g/m² (20-pound) forms, which may work better than 90-g/m² (24-pound) forms. Using a different contrast setting on the printer can also help.
- Use pre-heat control as instructed in the Operator's Guide for the printer.
- Change the application program and format to print amounts in both words and numbers, with no loss in throughput. Also, numeric fields can be printed with a reverse character set; that is, the background is toned and the digits are the color of the paper.
- If the document is to be folded, select a lightweight form that lessens the chance of toner cracking on the fold and breaking characters.
- Use a paper base that fuses well (see “Fusing Ability” on page 36).
Chapter 8. Selecting Special-Purpose Materials

This chapter details recommendations and limitations relating to the following special-purpose materials:

• Prepunched forms
• Labels

Chapter 10, “Testing Forms and Applications,” on page 77 contains additional information about techniques to use when you are evaluating special-purpose materials.

Prepunched Forms

The following considerations apply to the location and size of binder holes and corner cuts in forms used with continuous forms printers:

• The total area of binder holes and corner cuts within any 76.2-mm (3-in.) linear segment along the length of the paper web must not exceed 100 mm2 (0.16 square in.), regardless of form size.

 Note: Forms can have binder holes totaling 100 mm2 (0.16 square in.) at both the top and bottom of the form, as shown in Figure 19 on page 54, example A.

• Binder holes and corner cuts (opening containing a right angle) should not be in the 12.7-mm (0.5-in.) tractor-hole margin strips.

 Note: An optional hole with a diameter of 4.75 mm (0.187 in.) is allowed at each corner of the form. Figure 19 on page 54, example B, shows permitted combinations of openings per 76.2 linear mm (3 linear in.). Table 20 on page 55 specifies the dimensions of binder holes and corner cuts. Arrangements other than those shown are acceptable when the 76-mm (3-in.) rule is maintained.

• Some binder-hole locations in the interior of the form may contribute to abnormal paper shrinkage at the fuser. When this happens, printing near the hole is fused poorly. As with all forms, you need to test prepunched forms before selecting the final design.

• Binder holes should be at least 6.0 mm (0.24 in.) from horizontal or vertical perforations.

 Note: To ensure proper printing, two clear zones (areas within the tractor-hole strip that contain no printing) are required:

 • The first clear zone is 8.13 ±0.10 mm (0.320 ±0.004 in.) wide and runs the full length of the form in the process direction. This clear zone is 4.07 ±0.05 mm (0.160 ±0.002 in.) on either side of the center line of the tractor holes. Printing in this area causes skew sensor errors and the print job can fail.
 • In addition, if side 1/side 2 verification marks are used, there must be a clear zone that is approximately 51 mm (2 in.) from the top of the form and that includes the entire width of the tractor strip.
 • Form Bar Code checking
Before making production runs with prepunched forms, test the application to make sure that you are satisfied with the printer performance and the output quality. Prepunched holes can interact with forms line sensors and optical loop sensors and cause misfeeds.

Other sizes of openings and arrangements are acceptable when they do not exceed 96.8 sq. mm per 76 linear mm (0.15 sq. in. per 3 linear in.).
Table 20. Dimensions of Typical Binder Holes and Corner Cuts

<table>
<thead>
<tr>
<th>Type of Cut</th>
<th>Dimension</th>
<th>Area</th>
<th>Number per 76 linear mm (3 linear inches)</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>mm</td>
<td>inch mm²</td>
<td>inch</td>
</tr>
<tr>
<td>Binder Hole Diameter</td>
<td>6.35</td>
<td>0.250 31.61</td>
<td>0.049 3</td>
</tr>
<tr>
<td></td>
<td>7.94</td>
<td>0.310 49.68</td>
<td>0.077 2</td>
</tr>
<tr>
<td></td>
<td>9.52</td>
<td>0.38 70.97</td>
<td>0.110 1</td>
</tr>
<tr>
<td>Corner Cut, Triangular</td>
<td>9.5 x 4.8</td>
<td>0.380 x 0.190</td>
<td>22.58 0.035 4</td>
</tr>
<tr>
<td></td>
<td>12.7 x 6.35</td>
<td>0.50 x 0.25</td>
<td>40.00 0.620 2</td>
</tr>
</tbody>
</table>
Labels

Printable labels vary widely in their weight, construction, and adhesive. Because of this, label applications require thorough testing before ordering production quantities. These applications require more operator support than standard applications.

If you choose to print labels with a continuous forms printer, follow the recommendations in this chapter very carefully and work closely with your marketing representative while you are selecting labels stock. Your marketing representative can give you technical help and share information from other successful continuous forms printer users.

Note: Labels are only supported on the 4000 IS1 (simplex) & ID1/2 (dual simplex).

With the proper pre-qualification and design criteria (described later in this section), labels may be printed on the InfoPrint 4000 IS1 (simplex) & ID1/2 (dual simplex), provided that all of the following conditions are met:

• The forms have been thoroughly tested (20 000 feet or more) with the customer engineer present at the customer location using a reasonable facsimile of the proposed job.
• The fuse grade, jam ratio, and other print problems (such as blocking) of these test jobs are deemed acceptable by the customer.
• Any service impacts (decreased parts life, cost of more frequent cleaning, and so forth) have been negotiated with the customer by InfoPrint Solutions, before running production jobs on label stock.
• A clear understanding of the impacts to the system have been documented for the operators and the customer engineers to proactively run and service the machine.

Chapter 10, “Testing Forms and Applications,” on page 77 contains additional information about techniques to use when you are evaluating label stock.

Label Design

The final design should be tested on the printers to verify compatibility with the printing process.

Label Types

Figure 20 on page 57 describes the typical types of labels used on continuous forms printers. These labels must meet the requirements set forth in this document.
Figure 20. Types of Labels
Label Design Requirements

Labels must withstand a temperature of 204°C (400°F) and 3.4×10^5 N/m² (50 PSI) while passing through the fuser station. The labels must withstand a continuous temperature of 138°C (280°F) while they sit on the preheat platen when the printer is not printing.

Labels must be placed no closer than 1.27 mm (0.05 in.) to the top or bottom page fold.

The label must be able to form around a 44 mm (1.75-in.) radius at a 180° angle without detacking.

The label must have a minimum release value from the carrier of 40 grams/inch (180° peel at 25 feet/minute).

Adhesive must not be left on the carrier after removing the matrix.

Die cuts and internal perforations must not allow adhesive to ooze to the label surface.

Adhesive

Permanent, removable, or dry-gum adhesive must meet temperature, pressure, and static requirements. The dry-gum adhesives must not abrade (scrape or rub) off the form and deposit on printer components.

Face Stock Selection

The face stock can be paper or other materials. When selecting the face stock, remember the temperatures and pressures previously mentioned.

Because of the low melt point of vinyl materials, their use is not allowed in a continuous forms printer unless they can meet the temperature and pressure requirements.

Face Stock Paper

Paper used in a continuous forms printer must be fanfold (boxed) or roll-feed, continuous-form bond. The accepted definition of bond is paper that is formulated from 80% chemical wood pulp. Characteristics of this type of paper are normally within the ranges that work best in a continuous forms printer. However, experience indicates that papers with 25% cotton content are satisfactory.

Carrier Material

Carrier material must be compatible with the mechanical and thermal conditions present in a continuous forms printer.

Basis Weight and Thickness

The total basis weight for the face stock, adhesive, and carrier must not exceed 25 kg (54 pounds), which equates to approximately 500 sheets of 432 mm x 559 mm (17 in. x 22 in.) paper. The total thickness for the face stock, adhesive, and carrier must not exceed 0.2 mm (.0079 in.).

Smoothness

To obtain effective toner transfer and fusing, the Sheffield smoothness must be between 70 and 150 units. For information specific to high-resolution printers, see Chapter 3, "Forms Recommendations for High-Resolution Printers," on page 39.
Recommendations
The following recommendations can help you minimize both printer malfunctions and low-quality results when using a continuous forms printer for printing on pressure-sensitive labels:

- Hold the basis weight and caliper of the label stock to a minimum to decrease the number of machine checks and to improve fusing quality. A continuous forms printer does not accept paper with a caliper greater than 0.2 mm (0.0079 in., 54-pound stock maximum).

- Label stock must be able to withstand 204°C (400°F) and 3.4×10^5 N/m2 (50 pounds per sq. in.) for about five minutes without functional change, and without causing the adhesive to bleed. Permanent (nonremovable) labels more often contain adhesives of sufficient heat and pressure stability; therefore, they are likely to perform adequately in a continuous forms printer.

- Label stock must not emit vapors or odors that cause discomfort to operators or service personnel.

- Coated and synthetic labels can cause poor fuse quality and poor operation in the electrophotographic process of the printer. If treatment is necessary, treat labels on the surface only, and use compounds specifically designed to enhance the operation (fusing, for example) of the electrophotographic process.

- If bar codes are used, test them with a scanner to ensure that they meet scanner tolerances for fusing and print quality.

- Page perforations should conform to the tensile strength recommendations in "Perforation Strength" on page 19. Ensure that all perforations are clean and that all pages are lying flat.

- Preprinted label stock should have inks conforming to the recommendations in "General Recommendations" on page 48. Test samples of the stock before ordering large quantities. When running tests, focus on ink stability and the tendency of ink to transfer to printer components.

Operator Tasks
Printing labels sometimes requires operator involvement beyond the usual tasks of loading forms and emptying the stacker. For example, the operator may need to:

- Clean the printer before and after every label job
- Load unusually heavy label stock manually
- Check newly loaded labels for precise alignment and print registration

Refer to the Operator's Guide for more information about operator tasks.

Chapter 8. Selecting Special-Purpose Materials 59
Chapter 9. Developing Special Applications

InfoPrint Solutions continuous forms printers, in combination with the Advanced Function Presentation licensed programs, support a variety of special applications, such as those that print optical character recognition characters and bar code output. This chapter contains information about the forms used for these applications.

Optical Character Recognition Forms

Special bond and ledger-form papers designed for printing optical character recognition (OCR) are similar to the standard smooth bond described in “Paper Quality” on page 26; however, OCR forms have less contamination and less fluorescence than standard smooth bond, which enhances the OCR reading process. These special papers and similar security papers are not designed for use in the electrophotographic process. Test them thoroughly before ordering production quantities for your OCR application.

OCR forms can range from 20 to 24 pound basis weight. However, for best performance, OCR forms should be 24 pound basis weight.

Test OCR applications in the printer for adequate print quality and toner adhesion, and in an OCR reader for character recognition. Refer to Chapter 10, “Testing Forms and Applications,” on page 77 for techniques to use when evaluating OCR applications. For further details, consult your marketing representative.

For improved readability, print OCR characters at C1 to C3 contrast settings.

Bar Code Forms

The same forms considerations described for printing OCR forms also apply to printing bar code forms.

Test bar code applications in the printer for adequate print quality and toner adhesion, and in a bar code reader for scanning quality. Test your bar code applications using the techniques described in Chapter 10, “Testing Forms and Applications,” on page 77.

The examples in Figure 21 on page 62 show how bar codes can be oriented. Keep these options in mind as you consider label configurations and the type of forms you order for your application.
Bar codes can be created either by using fonts or by using draw rules. Continuous forms printers support the use of the four-pel module width.

The bar code fonts that are available with Bar Codes/Optical Character Recognition, Licensed Program 5688-021, have a minimum-module width of 0.4 mm (0.016 in.). This applies to both bars and spaces. The AFP licensed programs can be used either to modify the module width (for example, to three pels or to six pels) or to control the orientation. For information about the subroutine that accesses and uses these fonts, refer to Bar Code Fonts User’s Guide, S544-3190. Additionally, information about AFP licensed programs can be found in Guide to Advanced Function Presentation, G544-3876 and Overlay Generation Language/370: User’s Guide and Reference, S544-3702.

You can create your own bar codes by drawing rules and defining the width of those rules and spaces by using Document Composition Facility (DCF), Licensed Program 5748-XX9, Version 3, Release 2. For more information, refer to Document Composition Facility: Bar Code User’s Guide, S544-3115.

For information about the advantages and flexibility of bar code printing, refer to Data Stream and Object Architectures, Bar Code Object Content Architecture Reference, S544–3766.

Colors

A continuous forms printer can process forms of light-pastel colors such as blue, buff, canary, goldenrod, green, pink, and salmon. All printing by a continuous forms printer is black. Dark paper colors may interfere with operation of the sensor that detects forms jams and the sensors that check for proper steering of forms through the forms path if the colors are in the tractor strip area.
Forms Identification Bar Codes

InfoPrint 4000 and InfoPrint 4100 printers with the Forms Identification feature can now identify forms by reading a preprinted bar code, which is printed in the carrier strip. The bar code can identify up to 65,535 different forms using a hexadecimal format.

Bar Code Structure

The forms identification bar code contains 23 segments (bars), 16 of which represent the form identifier. The first five segments are trigger marks (three bars), a start mark and a header space. The last two segments are a trailer space and a stop mark.

These marks cannot vary:
- The first two trigger marks must be black. The third trigger block must be white.
- The start mark must be black.
- The header space must be white.
- The trailer space must be white.
- The stop mark must be black.

The 16 segments that are used for the hexadecimal code are divided into four characters, with each character comprised of four bars. The fourth character has the lowest order (value) and the first character has the highest order (value).

Hexadecimal numbering consists of a series of characters made up of four bits each. The four bits are weighted as indicated in Figure 22. Each character represents a hexadecimal character of 0 (zero) through F (0, 1, 2, 3, 4, 5, 6, 7, 8, 9, A, B, C, D, E, F).

Figure 22. Bar Code Structure
Bar Code Size and Placement

The forms identification bar code must conform to the size and placement shown in Figure 23. The following criteria must be followed:

- There can be no printing on the reverse side of the carrier strip where the bar code is printed.
- There can be no printing in the 20.32 mm (0.8 in.) between the leading edge of the form and the beginning of the bar code.
- The bar code must start 20.32 ±4.2 mm (0.8 ±0.1667 in.) from the leading edge of the form.
- Each bar code segment should be 2.54 ±0.02 mm (0.1 ±0.00096 in.) long (the process direction) and 4.32±7.93 mm (0.17 ±0.03125 in.) wide (the scan direction). Any reduction in the width must be at the edge of the form.
- A maximum of 4.32 mm (0.03125 in.) of unprinted area between the edge of the form and the bar code is allowed. (If possible, the bar code should print to the edge of the form.)
- The total length of the bar code (23 segments) cannot exceed 58.42 ±0.56 mm (2.3 ±0.022 in.).

Figure 23. Bar Code Dimensions for Tractored Forms
The forms identification bar code is preprinted on the edge of the form. For tractored forms, the bar code will be on the outside of the tractor holes. For tractorless forms, the bar code will be at the very edge of the form.

For InfoPrint 4000 models, the side verify marks are printed on the inside of the tractor holes, so the forms identification bar code and the side verify marks may be directly next to each other, separated by a row of tractor holes.

For InfoPrint 4100 models, the side verify marks are in line with the forms identification bar code, at the edge of the form. For those models, the default position of the side verify marks is changed to be a little more than three inches from the top of the form.

Note: For InfoPrint 4100 models in duplex mode, when printing on forms smaller than five inches, the Forms Identification feature cannot be used at the same time as the Side Verify feature, because the forms identification bar code and the side verify marks would interfere with each other.
Registration Marks in Tractorless Mode With the Universal Forms Control (UFC) Sensor

The InfoPrint 4100 uses registration marks to ensure accurate printing on preprinted forms as well as on white paper when printing in tractorless mode. The UFC sensor, located between the forms guide and the tractorless pressure roller, detects a registration mark and aligns the image according to the registration mark. This sensor can read the registration mark on the non-printing or printing side of the form, whether you are printing on preprinted forms or white paper (non-preprinted forms). The UFC sensor can read registration marks printed at any defined distance from the edge of the form as long as that distance is constant from page to page. When using preprinted forms, the sensor in printer 1 detects the preprinted registration mark. When printing on white paper, printer 1 prints the registration mark and the sensor in printer 2 detects the mark. Note that this registration mark can also be used by postprocessing devices.

The registration mark must have the same dimensions and location on each page of the form, whether it was preprinted or printed by printer 1.
Registration Marks on the InfoPrint 4100 using the Universal Forms Control (UFC) sensor

Figure 25 shows the registration mark on the InfoPrint 4100 when the UFC sensor is installed.

Notes:

1. For registration marks printed by Printer 1, the mark can be placed a maximum of 0.635 mm (.025 in) from the edge of the form. For preprinted registration marks, the mark can be placed at any location across the width of the form.
2. The registration mark can be located at a distance from the top of the form up to 355.6 mm (14 in).
3. The clear zone limits interference between the registration marks and the application data. Maximizing each clear zone before and after the mark, to at least 19.05 mm (0.75 in), on your application will yield the best results. Always test your application before ordering forms.
Location of Registration Marks with the Universal Forms Control (UFC) sensor

On InfoPrint 4100 models with the UFC sensor installed, the preprinted registration marks can be read on either side of the form and at any consistent distance from the edge of the form. Figure 26 shows the placement of the preprinted registration marks printed on the print side for Printer 2. It also shows the placement of the preprinted registration marks printed on the print side for Printer 1.

The Universal Forms Control sensor can register from black or colored marks, or logos.

Most colors can be supported, as long as the intensity of the color mark or logo used to register from is clearly different from the background. (Typically, a brightness value of 150 or above is required.) InfoPrint Solutions recommends that you test your forms and application to ensure that you can achieve the desired results.

Contact your marketing representative if you need InfoPrint Solutions assistance in testing your form.

Figure 26. Placement of Registration Marks with the UFC Sensor (outside wrap)
Location of Registration Marks for the Universal Forms Control (UFC) sensor on White Paper in Duplex Mode

Figure 27 shows the location of the registration marks printed by printer 1 and detected by printer 2 in duplex mode.

Note: When the UFC sensor is installed, the registration mark can be located anywhere on the non-printing side of the roll as the web enters the printer. When Side 2 Verify is used, the Engine 2 registration marks must be in line with the Side 2 Verify marks.
Registration Marks in Tractorless Mode Without the Universal Forms Control (UFC) Sensor

The InfoPrint 4000 and 4100 use registration marks to ensure accurate printing on preprinted forms as well as on white paper when printing in tractorless mode. A sensor at the rear of the printer detects a registration mark and aligns the image according to the registration mark. The sensor always reads the registration mark on the non-printing side of the form at the rear of the printer, whether you are printing on preprinted forms or on white paper (non-preprinted forms). When using preprinted forms, the sensor in printer 1 detects the preprinted registration mark. When printing on white paper, printer 1 prints the registration mark and the sensor in printer 2 detects the mark. Note that this registration mark can also be used by postprocessing devices.

The registration mark must have the same dimensions and location on the form, whether it was preprinted on the form or it was printed by printer 1. However, the location of the mark does vary depending on the printer model.

Registration Marks on the InfoPrint 4000

Figure 28 shows the registration mark on the InfoPrint 4000.

![Diagram of registration mark specifications](image)

Figure 28. Specifications for Registration Marks on the InfoPrint 4000

Notes:

1. For registration marks printed by Printer 1, the mark can be placed a maximum of .635 mm (.025 in) from the edge of the form. For preprinted registration marks, the mark can be placed at the edge of the form.

2. The registration mark can be located at a distance from the top of the form up to 355.6 mm (14 in) with the POWER controller.

Note:
Figure 29. Specifications for Registration Marks on the InfoPrint 4100

Notes:
1. For registration marks printed by Printer 1, the mark can be placed a maximum of .635 mm (.025 in) from the edge of the form. For preprinted registration marks, the mark can be placed at the edge of the form.
2. The registration mark can be located at a distance from the top of the form up to 355.6 mm (14 in) with some levels of controller code.
Registration Marks on the InfoPrint 4000 Model ID5/6 with RPQ 8B4281

Figure 30 shows the registration mark on the InfoPrint 4000 Models ID5/ID6 with RPQ 8B4281.

Figure 30. Specifications for Registration Marks on the InfoPrint 4000 Model ID5/6 with RPQ 8B4281
Location of Registration Marks on Rolled Forms

Figure 31 shows the location of the registration marks when the roll is wrapped with the preprinted marks on the outside of the roll.

![Figure 31. Registration Mark Location on Preprinted Form (outside wrap)](image)

Figure 32 shows the location of the registration marks when the roll is wrapped with the pre-printed marks on the inside of the roll.

![Figure 32. Registration Mark Location on Preprinted Forms (inside wrap)](image)

Notes:

1. The registration mark is located on the non-operator side of the roll and the non-printing side of the roll as the web enters the printer.

2. On InfoPrint 4100 models, the preprinted registration marks can be read on either side of the form if the Dual Toner Mark/Side Verify Sensor feature (Feature Code 4570/9570) is installed and enabled. See Location of Registration Marks with Dual Toner Mark/Side Verify Sensor (FC 4570/9570)” on page 75.
3. On InfoPrint 4100 models with the Universal Forms Control (UFC) sensor installed, the preprinted registration marks can be read on either side of the form and at any consistent distance from the side of the form. See “Location of Registration Marks with the Universal Forms Control (UFC) sensor” on page 68.
Location of Registration Marks with Dual Toner Mark/Side Verify Sensor (FC 4570/9570)

On InfoPrint 4100 models, the preprinted registration marks can be read on either side of the form if the Dual Toner Mark/Side Verify Sensor feature (Feature Code 4570/9570) is installed and enabled. Figure 33 shows the normal placement of the preprinted registration marks printed on the print side for Printer 2. It also shows the unusual placement of the preprinted registration marks printed on the print side for Printer 1.

When printing highlight color, the Dual Toner Mark/Side Verify sensor reads the Side 1/Side 1 page numbers to make sure the page with the highlight color matches the page with the black toner. The sensor is also used to look for Top of Form marks when they are printed on the reverse side of the paper from normal. This is common on forms originally created for some non-InfoPrint Solutions printers.

Figure 33. Printing Side Placement of Registration Marks with Dual Toner Mark/Side Verify Sensor (outside wrap)
Location of Registration Marks on White Paper in Duplex Mode

Figure 34 shows the location of the registration marks printed by printer 1 and detected by printer 2 in duplex mode.

Note: The registration mark is located on the printer 1 print side and the rear edge of the form as the web enters printer 2.
Chapter 10. Testing Forms and Applications

This chapter contains information about testing forms to be used in a continuous forms printer. The chapter answers questions about testing and presents test procedures. The information is intended to help you identify—and avoid—potential forms-related problems. Discovering problems early can save you money in forms and maintenance costs.

Questions and Answers: Testing Forms and Applications

These questions and answers can help you decide what forms and applications to test, and how to test them.

What is an Ideal Form and Application?

An ideal application for a continuous forms printer would print standard-font text and simple images on plain forms. The forms would be 75-g/m² (20-pound) xerographic bond that meets the guidelines found in Chapter 2, “Selecting Forms,” on page 25. This form is manufactured specifically for use in nonimpact printers, and is free of binder holes, cut-outs, and other cuts. The page layout keeps text and images away from perforations. After leaving the printer, output from an ideal application is allowed to cool, and receives minimal handling, rubbing, and creasing.

When processing an ideal form, the printer can deliver optimal print quality and reliability. With forms that deviate from the ideal, print quality may decrease, and the need for operator interventions may increase.

It is important that you test any forms and applications that do not match this ideal form and application description. Do your testing before processing large production orders or print jobs.

When Should I Test My Forms and Applications?

InfoPrint Solutions recommends testing all new forms prior to any commitment to purchase large quantities. InfoPrint Solutions recommends testing any form that is outside the guidelines specified in Chapter 2, “Selecting Forms,” on page 25. This testing will assure that the expected results are achievable. Some candidates for tests are:

- Envelopes
- Adhesive labels (simplex only)
- Preprinted forms
- Light or heavy forms
- Rigid forms
- Colored forms
- Recycled paper
- Forms with binder holes, cut-outs, or other cuts
- Forms with running perforations or multiple perforations
InfoPrint Solutions recommends testing all new applications on samples of the expected output forms. Candidates for tests include:

- Bar codes
- OCR print
- Solid-fill areas
- Printing near perforations
- Large amounts of text in small fonts
- Images

Sometimes an application is a candidate for testing because of what happens to the output after it leaves the printer. Conditions that can affect print jobs after printing is completed include:

- Heat and Pressure
 A continuous forms printer uses heat and pressure or heat alone to put print on the form. Applying heat and pressure to printed output can change the output. For example, if you take forms warm from the printer and put them into a tall stack, the weight of the stack can cause pages to stick together. The same effect can result from using a shearing press to cut stacks of warm forms.
- Moisture
 Water and other solvents can cause print to smear on some forms.
- Handling
 Frequent handling or rubbing can erase print from a form. For example, print on a price tag may rub off as shoppers repeatedly grasp the tag to look for size and price information. Similarly, perspiration on an operator's hand may leave a blurry thumb print.

What Will Testing Tell Me?

When you test, you can expect one of the following results:

- The application completes successfully, and you are satisfied with the output.
- The application cannot run at all or may require support from the form vendor or Service.
- The application completes, but with some reduction in print quality or printer reliability.

If your application is in the last category, review the output and your requirements, and then decide whether you are satisfied with the quality and reliability achieved. In some cases, you can make changes that improve the test results. Here are some possibilities:

Adjust the Process

Changing any one element in the overall printing process can affect other elements. Review your task from start to finish to determine where adjustments can be made. For example, consider the following:

- Can I change the forms?
- Can I change the way the forms are stored?
- Can I change the application?
- Can I change the way the forms are handled after printing?
For example, if you are having trouble with a particular preprinted form, consider whether you can achieve the result you need with an electronic overlay, and eliminate the preprinted form completely.

Consult with your forms suppliers and let them know that you are using a continuous forms printer. They can identify which of their products are suitable for processing on an electrophotographic, hot-fusing printer.

Consult your marketing representative for information about forms and applications that are being used successfully with continuous forms printers and other nonimpact printers. Always specify which model of printer that you have when ordering forms from a form vendor.

Adjust the Printer

InfoPrint Solutions printers have print quality controls that are accessible to the operator. Refer to the *Operator’s Guide* for information on how to improve print quality.

If print quality problems persist, call your service representative to verify that the printer is adjusted to specification.

How Do I Evaluate the Test Results?

The tests described raise some important questions. Only you and your user community can determine which questions are most important, and what levels of quality and reliability are acceptable in your particular circumstances.

The most important result of form testing is *knowledge*. A well-designed test lets you know what kind of print quality and reliability you can expect. Based on this knowledge, you can make informed decisions and trade-offs in choosing forms and applications for use with your continuous forms printer.

What Kind of Testing Should I Do?

Because every installation’s needs and processing environment are unique, no two test plans are identical; however, there are some general guidelines to follow.

Whenever possible, run the following three tests for each form and application combination:

- Single-lot multiple box or roll test
- Multiple-lot test
- Sample production run

Ideally, run these tests in your processing environment using your actual application.
Single-Lot Multiple Box/Roll Test

The single-lot multiple box or roll test consists of printing an entire box of forms or enough of a roll of a particular form to simulate an entire box. Consider the following questions while the printer is running:

- Do forms feed smoothly from the input area?
- Do you detect any odors that could indicate possible health and safety hazards resulting from heating the forms?
- Does the printer issue machine checks or other messages requiring operator intervention?
- Does the application process smoothly, without pauses or jerky motions?
- Do the forms generate noticeable paper dust, chads, or other debris?
- Do the pre/postprocessing devices handle the forms?
- Is the form side sensitive for duplex?
- Do adhesive labels peel off their carrier?
- Does any glue seep out from under adhesive labels during printing and contaminate the drum, hot roll, or other parts of the printer?
- Do the forms fold and stack correctly?
- Do the forms provide the desired print quality?

After the entire box or roll is used, inspect the printer and consider the following questions:

- Did paper dust, chads, loose labels, or other debris accumulate in the printer during processing?
- Are there adhesive, ink, or toner deposits on the printer rollers?

Inspect the printed output and consider the following questions:

- Is the printing crisp and clear, especially close to edges, perforations, holes, and cuts?
- Is print quality uniform across the page and throughout the box or roll?
- Can OCR and bar code output be read correctly by the scanners for which they are intended?
- Are solid-fill areas printed evenly?
- Does toner leave ghost images on facing pages?
- Do the forms show any discoloration after processing?
- Do colored inks on preprinted forms change color?
- Do the forms shrink or change shape during processing?
- Do the forms get wrinkled during processing?

Multiple-Lot Test

The multiple-lot test helps you determine whether a manufacturer’s forms are uniform across different lots. To perform the multiple-lot test, take samples from several boxes or rolls of the same type of form. Print identical output on each of these samples, and compare the quality. Are the results uniform?
Sample Production Run

Running a full-scale production job, including all pre- and postprocessing, can reveal potential trouble spots that were not evident in the shorter tests. When you evaluate the sample production run, use the procedure described in "Single-Lot Multiple Box/Roll Test" on page 80. Be sure to monitor the entire printing process, and examine samples from the beginning, middle, and end of the job.

Consider the following questions as you handle the forms as they will be handled after production processing:

- Does the print smear?
- Does the print rub off or erase easily?
- Do the forms stick together after they have been refolded and allowed to cool?

If any of these problems occur, review the suggestions given in "Adjust the Process" on page 78.
Troubleshooting

This section identifies situations that can cause problems during printer processing. Consider these possibilities when you attempt to resolve print quality or reliability problems during testing.

Printing on the Reverse Side

Occasionally, forms printed on one side are recycled by printing it on the reverse side. Forms printed by a printer that uses the electrophotographic process should never be rerun on a continuous forms printer. Heat from the fuser softens the original toner and contaminates printer components. The result is lower print quality and possibly more forms jams.

Note: In duplex printing applications the second printer fuses at a lower heat to prevent any print quality problems.

Printing on the reverse side is allowable only on Printer 2 of a duplex printing system. The original print on the front side must be printed by Printer 1 of the duplex system.
Chapter 11. Safety Practices

When selecting ink and paper, consider that fusing temperatures and mechanical actions may cause vapors to be emitted at levels that create an industrial hygiene safety exposure. This chapter describes health and safety considerations for a variety of paper and preprinted forms used with a continuous forms printer.

Blank Forms

Verify that forms exposed to a maximum temperature of 204°C (400°F) and a pressure of 3.4×10^5 N/m2 (50 psi) for five minutes must not emit:
- Low-boiling aldehydes or halogen-containing compounds
- Ketones (for example, benzophenone)
- Any vapor that causes discomfort to operator or service personnel
- Any vapor that causes printer components to deteriorate

Preprinted Forms

In addition to the safety considerations for paper in forms as described above, observe the following for ink when using preprinted forms:
- Reduce the use of preprinted solid areas on forms, particularly reverse headings and logos.
- Allow the ink on preprinted forms to cure completely before processing the forms through a continuous forms printer. A minimum of 72 hours of curing time is recommended. This allows most volatile materials to evaporate before processing.
- Provide adequate ventilation around the printer to reduce the exposures associated with heavily inked preprinted forms. Adequate venting and filtering are essential to lower the level of airborne contaminants and to help provide a satisfactory printer environment. To ensure appropriate ventilation, indoor air makeup in the computer room should be set to a minimum of 20 cubic feet per minute per person of outdoor air makeup.
- Avoid using forms with ink manufactured using iodine as a catalyst or stabilizer. Inks should not emit vapors at levels that cause an industrial hygiene safety exposure (see “Vapor Emissions from Preprinted Forms” on page 49 for details).
- Keep the printer covers closed when the printer is operating.
Electronic Overlays

Using electronic overlays can prevent the possible hazards involved with preprinted forms. Advanced Function Presentation (AFP) lets you start with a plain piece of paper and print virtually any combination of fonts, lines, and images. AFP also allows you to define and store collections of constant data that can be combined with variable data at print time. This stored constant data is known as an electronic overlay. Instead of using preprinted forms, you can use electronic overlays to put boxes, lines, shading, text, and logos on a page.

Using electronic overlays can result in significant savings in forms cost and storage space, as well as operator time required to load and unload preprinted forms. If a design needs to be changed, electronic overlays can be changed more quickly and without paying scrap charges. In addition, using electronic overlays eliminates concerns about the papers and inks used in preprinted forms.

Labels

In addition to the safety considerations for paper and ink as described above, observe the following recommendations when using labels:

- Provide adequate ventilation around the printer to reduce the exposure associated with vapors created when the adhesive and carrier are heated in the fuser.
 Adequate venting and filtering are essential to lower the level of airborne contaminants and to help provide a satisfactory printer environment.
 To ensure appropriate ventilation, indoor air makeup in the computer room should be set to a minimum of 20 cubic feet per minute per person of outdoor air makeup.
- Handle labels carefully immediately after printing. They are hotter than paper because the heavier mass of paper, adhesive, and carrier of the label retains more heat than paper alone.

Multipart Carbonless Forms

Using multipart carbonless forms with continuous forms printers is not recommended.
Appendix. Basis Weight and Grams/Square Meter of Paper

Table 21 gives the conversion values of common paper stocks.

<table>
<thead>
<tr>
<th>Bond 17x22</th>
<th>Cover 20x26</th>
<th>Carbonizing 20x30</th>
<th>Postcard 22.5x28.5</th>
<th>Index 25.5x30.5</th>
<th>Tag/Tab Cards 24x36</th>
<th>Book/Offset 25x38</th>
<th>Grams/Meter²</th>
</tr>
</thead>
<tbody>
<tr>
<td>5.5</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>13</td>
</tr>
<tr>
<td>10.0</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>23</td>
</tr>
<tr>
<td>18</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>29</td>
</tr>
<tr>
<td>20</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>30</td>
</tr>
<tr>
<td>30</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>49</td>
</tr>
<tr>
<td>32</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>52</td>
</tr>
<tr>
<td>40</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>64</td>
</tr>
<tr>
<td>45</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>67</td>
</tr>
<tr>
<td>50</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>68</td>
</tr>
<tr>
<td>55</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>74</td>
</tr>
<tr>
<td>60</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>75</td>
</tr>
<tr>
<td>50</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>81</td>
</tr>
<tr>
<td>60</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>89</td>
</tr>
<tr>
<td>60</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>90</td>
</tr>
<tr>
<td>70</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>98</td>
</tr>
<tr>
<td>70</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>104</td>
</tr>
<tr>
<td>80</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>105</td>
</tr>
<tr>
<td>80</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>108</td>
</tr>
<tr>
<td>72</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>111</td>
</tr>
<tr>
<td>75</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>114</td>
</tr>
<tr>
<td>80</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>118</td>
</tr>
<tr>
<td>80</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>120</td>
</tr>
<tr>
<td>90</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>130</td>
</tr>
<tr>
<td>90</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>133</td>
</tr>
<tr>
<td>90</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>135</td>
</tr>
<tr>
<td>90</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>146</td>
</tr>
<tr>
<td>67</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>147</td>
</tr>
<tr>
<td>72</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>148</td>
</tr>
<tr>
<td>100</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>150</td>
</tr>
<tr>
<td>99</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>161</td>
</tr>
<tr>
<td>60</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>162</td>
</tr>
<tr>
<td>90</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>163</td>
</tr>
<tr>
<td>100</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>165</td>
</tr>
</tbody>
</table>
Table 21. Conversion of Basis Weights (Pounds/Ream to Grams per Square Meter) (continued)

<table>
<thead>
<tr>
<th>Bond 17x22</th>
<th>Cover 20x26</th>
<th>Carbonizing 20x30</th>
<th>Postcard 22.5x28.5</th>
<th>Index 25.5x30.5</th>
<th>Tag/Tab Cards 24x36</th>
<th>Book/Offset 25x38</th>
<th>Grams/Meter²</th>
</tr>
</thead>
<tbody>
<tr>
<td>80</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>175</td>
<td></td>
</tr>
<tr>
<td>65</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>176</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>120</td>
<td>178</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>70</td>
<td></td>
<td></td>
<td>110</td>
<td>179</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>72</td>
<td></td>
<td></td>
<td>90</td>
<td>197</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>52</td>
<td></td>
<td></td>
<td>110</td>
<td>199</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>80</td>
<td></td>
<td></td>
<td>125</td>
<td>203</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>100</td>
<td></td>
<td></td>
<td>125</td>
<td>216</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>140</td>
<td>219</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>120</td>
<td></td>
<td></td>
<td>120</td>
<td>232</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>100</td>
<td></td>
<td></td>
<td>125</td>
<td>232</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>140</td>
<td>232</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>140</td>
<td>170</td>
<td></td>
<td>175</td>
<td>285</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>180</td>
<td>285</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>130</td>
<td>175</td>
<td></td>
<td>180</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>220</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>250</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>200</td>
<td></td>
<td></td>
<td>200</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>250</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>200</td>
<td></td>
<td></td>
<td>439</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
Notices

This information was developed for products and services offered in the U.S.A.

Ricoh may not offer the products, services, or features discussed in this document in other countries. Consult your local Ricoh representative for information on the products and services currently available in your area. Any reference to a Ricoh product, program, or service is not intended to state or imply that only that Ricoh product, program, or service may be used. Any functionally equivalent product, program, or service that does not infringe any Ricoh intellectual property rights may be used instead. However, it is the user's responsibility to evaluate and verify the operation of any non-Ricoh product, program, or service.

References in this document to Ricoh products, product features, programs or services do not imply that Ricoh intends to make such products, product features, programs or services available in all countries in which Ricoh operates or does business.

Ricoh may have patents or pending patent applications covering subject matter described in this document. The furnishing of this document does not give you any license to these patents. You can send license inquiries, in writing, to:

Ricoh Company, Ltd.
6300 Diagonal Hwy 002J
Boulder, CO 80301-9270
U.S.A.

The following paragraph does not apply to the United Kingdom or any other country where such provisions are inconsistent with local law: RICOH PRODUCTION PRINT SOLUTIONS, LLC PROVIDES THIS PUBLICATION "AS IS" WITHOUT WARRANTY OF ANY KIND, EITHER EXPRESS OR IMPLIED, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES OF NON-INFRINGEMENT, MERCHANTABILITY OR FITNESS FOR A PARTICULAR PURPOSE. Some states do not allow disclaimer of express or implied warranties in certain transactions, therefore, this statement may not apply to you.

This information could include technical inaccuracies or typographical errors. Changes are periodically made to the information herein; these changes will be incorporated in new editions of the publication. Ricoh may make improvements and/or changes in the product(s) described in this publication at any time without notice.

Any references in this information to non-Ricoh Web sites are provided for convenience only and do not in any manner serve as an endorsement of those Web sites. The materials at those Web sites are not part of the materials for this Ricoh product and use of those Web sites is at your own risk.

Ricoh may use or distribute any of the information you supply in any way it believes appropriate without incurring any obligation to you.

Any performance data contained herein was determined in a controlled environment. Therefore, the results obtained in other operating environments may vary significantly. Some measurements may have been made on development-level systems and there is no guarantee that these measurements will be the same on generally available systems. Furthermore, some measurement may have been estimated through extrapolation. Actual results may vary. Users of this document should verify the applicable data for their specific environment.

Information concerning non-Ricoh products was obtained from the suppliers of those products, their published announcements or other publicly available sources. Ricoh has not tested those products and cannot confirm the accuracy of performance, compatibility or any other claims related to non-Ricoh products. Questions on the capabilities of non-Ricoh products should be addressed to the suppliers of those products.
All statements regarding Ricoh's future direction or intent are subject to change or withdrawal without notice, and represent goals and objectives only.

This information contains examples of data and reports used in daily business operations. To illustrate them as completely as possible, the examples include the names of individuals, companies, brands, and products. All of these names are fictitious and any similarity to the names and addresses used by an actual business enterprise is entirely coincidental.

Notice: This mark applies only to countries within the European Union (EU), Norway, and Switzerland.

Appliances are labeled in accordance with European Directive 2002/96/EC concerning waste electrical and electronic equipment (WEEE). The Directive determines the framework for the return and recycling of used appliances as applicable throughout the European Union. This label is applied to various products to indicate that the product is not to be thrown away, but rather reclaimed upon end of life per this Directive.

In accordance with the European WEEE Directive, electrical and electronic equipment (EEE) is to be collected separately and to be reused, recycled, or recovered at end of life. Users of EEE with the WEEE marking per Annex IV of the WEEE Directive, as shown above, must not dispose of end of life EEE as unsorted municipal waste, but use the collection framework available to customers for the return, recycling and recovery of WEEE. Customer participation is important to minimize any potential effects of EEE on the environment and human health due to the potential presence of hazardous substances in EEE. For proper collection and treatment, contact your local Ricoh representative.

Product recycling and disposal:

This unit must be disposed of according to applicable local and national regulations. Ricoh encourages owners of information technology (IT) equipment to responsibly dispose of their equipment when it is no longer needed. Ricoh offers a variety of location-specific product return programs to assist equipment owners with the responsible disposal of their InfoPrint or Ricoh branded equipment. Information on Ricoh equipment disposal offerings can be found on Ricoh's Internet site at http://www.infoprint.com, and search for "take back".

In the United States of America, information on Ricoh equipment disposal offerings can also be obtained by calling 1-888-776-0924.

This unit may have lead-containing materials – such as circuit boards and connectors – that require special handling. Before this unit is disposed of, these materials must be removed and recycled or discarded according to applicable regulations. This book contains specific information on batteries and refrigerant where applicable.

This product may contain a sealed, lead-acid battery; lithium battery; nickel-metal-hydride battery; or nickel-cadmium battery. Batteries of these types must be recycled or disposed of properly. Recycling facilities may not be available in your area.

In the United States, Ricoh has established a collection process for reuse, recycling, or proper disposal of used batteries and battery packs from Ricoh equipment. For information on proper disposal of the batteries in this product, please contact Ricoh.
For information on disposal of batteries outside the United States, contact your local waste disposal facility.

![Waste Disposal Symbol]

Notice: This mark applies only to countries within the European Union (EU), Norway, and Switzerland.

Appliances are labeled in accordance with European Directive 2002/96/EC concerning waste electrical and electronic equipment (WEEE). The Directive determines the framework for the return and recycling of used appliances as applicable throughout the European Union. This label is applied to various products to indicate that the product is not to be thrown away, but rather reclaimed upon end of life per this Directive.

In accordance with the European WEEE Directive, electrical and electronic equipment (EEE) is to be collected separately and to be reused, recycled, or recovered at end of life. Users of EEE with the WEEE marking per Annex IV of the WEEE Directive, as shown above, must not dispose of end of life EEE as unsorted municipal waste, but use the collection framework available to customers for the return, recycling and recovery of WEEE. Customer participation is important to minimize any potential effects of EEE on the environment and human health due to the potential presence of hazardous substances in EEE. For proper collection and treatment, contact your local Ricoh representative.

This information is for planning purposes only. The information herein is subject to change before the products described become available.

If you are viewing this information softcopy, the photographs and color illustrations may not appear.

Trademarks

These terms are trademarks of Ricoh Co., LTD in the United States, other countries, or both:

Advanced Function Presentation
AFP
AFCCU and Advanced Function Common Control Unit
AFP and Advanced Function Presentation
GDDM
IPDS and Intelligent Printer Data Stream
InfoPrint
Infoprint
PSF and Print Services Facility

These terms are trademarks of the IBM Corporation in the United States, other countries or both:

AIX®
AIX/6000
BCOCA and Bar Code Object Content Architecture
ESCON
FICON
ES/3090
ES/4381
ES/9000
IBM®
Adobe, the Adobe logo, PostScript, and the PostScript logo are either registered trademarks or trademarks of Adobe Systems Incorporated in the United States and/or other countries.

Intel, Intel Inside (logos), MMX, and Pentium are trademarks of Intel Corporation in the United States, other countries, or both.

Java and all Java-based trademarks are trademarks of Sun Microsystems, Inc. in the United States, other countries, or both.

Linux is a registered trademark of Linus Torvalds in the United States, other countries, or both.

Microsoft, Windows, Windows NT, and the Windows logo are trademarks of Microsoft Corporation in the United States, other countries, or both.

UNIX is a registered trademark of The Open Group in the United States and other countries.

Other company, product, or service names may be trademarks or service marks of others.

Information about Installed Software
The printer contains resident software, including the following:
- Software developed and copyrighted by IBM® Corporation
The following terms are defined as they are used in continuous forms printer documentation.

A

adhesive label. Special-application material; typically consists of paper labels coated on one side with an adhesive mixture, temporarily affixed to backing material. See also **carrier.**

AFP. Advanced function printing.

AFPDS. Advanced function printing data stream.

all-points addressability. The capability to address, reference, and position text, overlays, and images at any defined point on the printable area of a page.

APA. All-points addressable.

application. The use to which an information processing system is put; for example, a payroll application, an airline reservation application, a network application.

application program. A program written for or by a user that applies to the user's work, such as a program that does inventory control or payroll.

application programmer. One who develops application programs. Contrast with **system programmer.**

ASTM. American Society for Testing Materials.

B

bar code. A code representing characters by sets of parallel bars of varying thickness and separation that are read optically by transverse scanning.

basis weight. The weight in g/m² or pounds of a ream (500 sheets) of paper cut to a given standard size for that grade. The basis weight of continuous form for computer output is based on the size for bond papers.

binder holes. A series of holes or slots punched at set intervals that allow the form to be inserted in a loose-leaf or ring binder.

bond (paper). Paper formulated with at least 80% wood pulp. Bond-paper forms work best in the continuous forms printer.

C

calender. A process to make paper smooth or glossy by passing it through a series of metal rollers during the last steps of a paper-making machine.

calender cut. Slits, glazed lines, or discolored lines across the paper caused when wrinkles pass through the calender rollers.

caliper. The thickness of forms, usually expressed in tenths of a mm or thousandths of an inch.

carrier. The backing material for labels. Labels consist of the printable material, the adhesive, and the carrier.

CE. Customer Engineer.

chad. (1) The material separated from a data medium when punching a hole. (2) The residue separated from the carrier holes in continuous form.

change. As used in continuous forms printer action messages, instructs the printer operator to remove and discard a used component and then install a new one. For example, the CHANGE TONER COLLECTOR message means that the operator should take out the toner-collecto bottle, throw it away, and put in a new one.

channel command. An instruction directing a data channel, control unit, or device to perform an operation or set of operations.

character. A letter, number, punctuation mark, or special graphic used for the production of text.

character set. (1) A finite set of different characters that is complete for a given purpose; for example, the character set in ISO Standard 646, "7-bit Coded Character Set of Information Processing Interchange." (2) A group of characters used for a specific reason; for example, the set of characters a printer can print.

check. As used in continuous forms printer action messages, instructs the printer operator to inspect a component. For example, the CHECK TONER COLLECTOR message means that the operator should look at the toner-collecto bottle and make sure that it is physically present, in the proper place, and correctly installed.

clear. As used in continuous forms printer action messages, instructs the printer operator to remove crumpled forms, paper scraps, and other debris from the printer. For example, the CLEAR UPPER TRACTOR message means that forms have gotten wedged in the transfer station area, and the operator must remove them before the printer can operate.
coated paper. Paper that has had a surface coating applied to produce smoothness.

configuration. (1) The arrangement of a computer system or network as defined by the nature, the number, and the chief characteristics of its functional units. More specifically, the term configuration may refer to a hardware configuration or a software configuration. (2) The devices and programs that make up a system, subsystem, or network.

configure. The procedure used to customize the continuous forms printer to a specific operating and communication environment.

constant data. Data that does not change; for example, the company letterhead and standard text in form letters, or the headings and boxes on a preprinted form. Contrast with variable data.

continuous forms. A series of connected forms that feed continuously through a printing device. The connection between the forms is perforated to allow the user to tear them apart.

controlled-access area. An area where access is limited to authorized personnel.

controlling computer. The processing unit to which the continuous forms printer is attached through a channel interface.

controlling computer system. The data processing system to which a network is connected and with which the system can communicate.

corner cut. In a form, a cut or opening of any size containing one or more right angles.

cure. The process of drying ink sufficiently for minimum transfer of the ink to any parts of the printer it contacts.

cut. The severed part of a perforation. Cuts are separated by ties. See also perforation.

cutout. A part of the form that either has been eliminated or perforated for subsequent removal; for example, corner cuts and binder holes.

developer mix. A combination of carrier beads and toner in which the beads electrically charge the toner.

diagnostic. Pertaining to the detection and isolation of errors in programs and faults in equipment.

diagnostic mode. The operational mode in which the printer can check itself in case of a malfunction. When the continuous forms printer is in diagnostic mode, it is not accepting information from the attached controlling computer system. In the continuous forms printer, only service representatives can use diagnostic mode. Contrast with print mode and test mode.

dishing. The curve a stack of forms takes when folded or refolded at the fold perforation.

Document Composition Facility (DCF). A program that provides text formatting for the continuous forms printer.

down fold. Fanfold forms are alternately folded. When fanfold forms are unfolded and held horizontally, a fold is a down fold if it points down from the horizontal surface.

drag. The resistance to forms feeding freely into the printer; for example, the form rubbing against the carton.

electronic overlay. A collection of constant data electronically composed in the controlling computer. Can be merged with variable data on a page during printing. An electronic overlay defines its own environment. It can be in coded form or raster pattern form. Contrast with page segment. See also forms overlay and preprinted form.

electrophotographic process. The creation of an image on forms by uniformly charging the photoconductor, creating an electrostatic image on the photoconductor, attracting negatively charged toner to the discharged areas of the photoconductor, and transferring and fusing the toner to forms.

emboss. To press and raise the surface of paper into a design. Embossed paper appears thicker than nonembossed paper, can increase printer wear, and can degrade print quality.

error log. (1) A data set or file in a product or system where error information is stored for later access. (2) A record of machine checks, device errors, and volume statistical data.

face stock. The printable surface of a label.
fanfold. Continuous forms that are alternately folded at regular intervals, usually on a perforation.

FLSF. Font Library Service Facility.

fold memory. The ability of a form to refold at the fold perforation after exposure to heat during the fusing process.

fold perforation. The perforation on which a form is folded during manufacture and refolded after printing. See also page perforation.

Font Library Service Facility (FLSF). A licensed program that provides a way to make changes to a font while retaining its format, as defined by the architecture and as required by Print Services Facility.

FORMDEF. Form definition.

forms. The material on which output data is printed, such as paper or adhesive labels. The area between perforations on continuous printer forms. See electronic overlay and preprinted form.

forms path. The entire route that forms travel during processing. The forms path usually begins where the forms are loaded and ends at the stacker. Synonym for paper path.

format. (1) The arrangement or layout of data on a data medium. (2) The size, style, type of page, margins, printing requirements, and so on, of a printed page.

form definition (FORMDEF). A statement that specifies the attributes of a physical page, such as the number of copies and one-sided or two-sided printing.

fuse. To use heat and pressure to blend toner onto forms to make a permanent bond.

fuse grade. The quality of adherence of toner to paper.

G

GDDM. Graphical Data Display Manager.

graphic. A symbol produced by a process such as handwriting, drawing, or printing.

Graphical Data Display Manager (GDDM). A program that allows pictures to be defined and displayed through function routines.

I

impact printer. A printer in which printing is the result of mechanical impacts. Contrast with nonimpact printer.

IPDS. Intelligent Printer Data Stream.

installation. (1) In system development, preparing and placing a functional unit in position for use. (2) A particular computing system, including the work it does and the people who manage it, operate it, apply it to problems, service it, and use the results it produces.

installation verification procedure. A procedure distributed with licensed programs that tests the newly installed programs to verify that the basic facilities of the programs are functioning correctly.

Intelligent Printer Data Stream (IPDS). Information the system sends to printers that contain decision-making capability. Generally, this information contains basic formatting, error recovery, and character data.

ISO. International Organization for Standardization.

ISO sizes. Pertaining to a set of paper sizes selected from those standardized by the International Organization for Standardization (ISO) for use in data processing.

J

jam. In a printer, a condition where forms have become blocked or wedged in the forms path such that the printer cannot operate.

K

KB. Kilobyte (1KB=1 024 bytes).

L

landscape orientation. Text and images that are printed parallel to the longer side of the forms. Contrast with portrait orientation.

laser (light amplification by stimulated emission of radiation). A device that emits a beam of coherent light.

latent image. In a printer, the invisible image that exists in the sensitized material after exposure but before development.

library. A collection of related files. For example, one line of an invoice may form an item, a complete invoice may form a file and the collection of inventory control files may form a library. The libraries used by an organization are known as the data bank.

line printer. A printer that prints a line of characters as a unit. Contrast with page printer.

logical page. The print on the page, such as composed text, graphics, and fonts within defined margins. Contrast with physical page.
logo. An identifying emblem, statement, or motto of a company.

M

MB. Megabyte (1MB = 1,048,576 bytes).

microcode. In the continuous forms printer, refers to the microprogramming stored on the microcode (or EC) diskette. Microcode is used by the control unit to manage the printer and its functions.

microperforation. Extremely small perforations. After forms are separated, those with microperforations typically have smoother edges than those with regular perforations.

N

nonimpact printer. A printer in which printing is not the result of mechanical impacts.

nonprocess runout (NPRO). An operation that moves forms through the forms path without printing new pages.

O

OCR. Optical character recognition.

offset paper. A grade of paper to which sizing is added to resist moisture. This paper is also treated on the surface to prevent lifting of the paper surface during printing by ink presses.

OGL. Overlay Generation Language.

operating environment. The physical environment; for example, temperature, humidity, layout, or power requirements.

optical character recognition (OCR). Character recognition that uses optical means to identify graphic characters.

orientation. The number of degrees an object is rotated relative to a reference; for example, the orientation of an overlay relative to the page point of origin. See also text orientation.

overlay. See electronic overlay.

Overlay Generation Language (OGL). The licensed program that is used to create electronic overlays.

P

page. A printed form. See also logical page and physical page.

page definition (PAGEDEF). A statement that specifies attributes of a logical page, such as the width of its margins and the orientation of text.

page perforation. The perforation that defines the page of a form. It may or may not be at a fold in the form. A form may have several pages between each fold. See also fold perforation.

page printer. A device that prints one page as a unit. Contrast with line printer.

Page Printer Formatting Aid (PPFA). A licensed program that creates form definitions (FORMDEFs) and page definitions (PAGEDEFs).

pallet. A portable platform for handling, storing, or moving materials.

paper break. A separation, either at a perforation or from a tear, of the continuous form paper.

paper path. The entire route that forms travel while they are being processed. The paper path usually begins where the forms are loaded and ends at the stacker. Because not all forms are paper, the term forms path is preferred.

parameter. A variable that is given a constant value for a specified application and that may denote the application.

PC drum. Photoconductor drum. A hollow cylinder that is covered with photoconductive material.

pel (picture element). (1) An element of a raster pattern; a point where a toned area on the photoconductor may appear. (2) On an all-points-addressable output medium, each pel is an addressable unit. On a row-column addressable output medium, the only pel addressable is the beginning of a character cell.

perforation. A linear series of unconnected cuts in the continuous form paper. The interval between cuts is referred to as a tie. The perforation defines either a fold or page boundary. See also cut, fold perforation, microperforation, and page perforation.

photoconductor. The material that is wrapped around the drum. The medium for transferring images to paper.

physical page. The form on which the printer is printing, such as an 8.5 x 11-inch sheet of paper.

physical planner. The person in an organization who plans the environmental, electrical, and space requirements for your facility.

planning coordinator. The person in your organization who is responsible for coordinating all the planning and installation activities for the continuous forms printer.
plant. A manufacturing location.

point of origin. The location of the first print position on a logical page. The point of origin is usually stated in terms of X and Y coordinates. The point of origin used by a printer can be affected by factors such as printable area and form orientation.

portrait orientation. Pertaining to a display or hard copy with greater height than width. Contrast with landscape orientation.

PPFA. Page Printer Formatting Aid.

preprinted form. A sheet of forms containing a preprinted design of constant data with which variable data can be combined. See also electronic overlay.

Print Management Facility (PMF). An interactive menu-driven program that can be used to create and modify fonts and to define output formatting for data printed on the continuous forms printers.

print mode. The operational mode in which information is received from the attached controlling computer system and printed output is produced. Contrast with test mode and diagnostic mode.

print position. The physical positions of the characters constituting a print line relative to the form.

print quality. The quality of printed output relative to existing standards and in comparison with jobs printed earlier.

Print Services Access Facility (PSAF). A menu-driven, print parameter selection program for page printers controlled by PSF.

Print Services Facility (PSF). A program that provides device support for advanced function printing.

print surface. The side of a form that receives the printed image.

R

raster. (1) In computer graphics, a predetermined pattern of lines that provides uniform coverage of a display space. (2) The coordinate grid that divides the display area of a display device. (3) In the printer, an on/off pattern of electrostatic images produced by the laser print head under control of the character generator.

raster pattern. A series of picture elements (pels) arranged in scan lines to form an image.

registration. In printing, refers to the relative print positions of images that are printed at different times. For example, when you process preprinted forms, the registration is good if the new image printed by the continuous forms printer aligns correctly with the preprinted image. Print that extends beyond box edges and text that overlaps other text are examples of poor registration.

resistivity. An electrical characteristic of paper that is a measure of its ability to resist an electrical charge.

resource. (1) People, equipment, or material used to perform a task or a project. (2) Any facility of a computing system or operating system required by a job or task, including main storage, input/output devices, processing units, data sets, and controller processing programs; for example, page printers use resources such as form definitions, page definitions, and fonts.

reverse heading. A heading where each character is highlighted by reversing the color of the character with its background; for example, changing a black character on a white background to a white character on a black background.

running perforation. A perforation that is vertical and next to the tractor holes.

S

scanner. A device that examines OCR, MICR, or bar code patterns and generates electrical signals corresponding to the pattern. It sends the signals to a computing device for processing.

screen or screening. In document printing, a sheet of material, usually film, carrying a regular pattern of small dots. When printing, ink adheres only to the dots, and many dots close together appear solid. This method prints large areas of ink on paper but uses much less ink than printing the same area with solid ink.

security paper. Specially formulated paper used for negotiable documents, such as checks. Security paper improves the anti-fraud characteristics of the document.

shift. A scheduled work period. For example, a 24-hour day is often divided into three 8-hour shifts.

sizing. A process where paper is treated to give it resistance against penetration of liquids.

smoothness. Having a continuous even surface.

special-purpose materials. Printable items other than blank paper; for example, adhesive labels and preprinted forms.

stack lean. A measurable slope from the vertical of a stack of forms. Excessive stack lean can cause failures when feeding and refolding forms.

Synchronous Data Link Control (SDLC). A standardized discipline used for managing synchronous, code-transparent, serial-by-bit, information transfer over a link connection.
system programmer. A programmer who plans, generates, maintains extends, and controls the use of an operating system, with the aim of improving overall productivity of an installation.

T

TAPPI. Technical Association of Pulp and Paper Industry.

task. A basic unit of work to be accomplished by a device or an operator.

tensile strength. A measure of the force that the paper forms can withstand without tearing.

test mode. The operational mode in which the printer can produce print samples, accept configuration changes, and control traces. When the continuous forms printer is in test mode, it is not accepting information from the attached controlling computer system. Contrast with print mode and diagnostic mode.

text orientation. The position of text as a combination of print direction and baseline direction.

tie. The interval between cuts of a perforation. See also perforation.

toner. The material that forms the image on the paper.

trace. (1) A record of the running of a computer program. It exhibits the sequences in which the instructions were executed. (2) To record a series of events as they occur. (3) In the continuous forms printer, a customer engineer and customer analysis procedure.

tractor. The mechanism that controls movement of continuous form by way of holes (see tractor holes).

tractor holes. The holes in the side margins on continuous form. When placed on the tractor pins, the holes maintain printer alignment and registration, and control the movement of the paper.

U

up fold. Fanfold forms are alternately folded. When fanfold forms are unfolded and held horizontally, a fold is an up fold if it points up from the horizontal surface.

V

variable data. The data that can vary; for example, the names and addresses in form letters. Contrast with constant data.

void. (1) A missing part of the printed character. (2) A missing piece of a continuous form.

W

web. A roll of forms.
Index

Numerics
3900, forms specifications 45
600 pel printers, forms recommendations 39

A
abbreviations 91
acronyms 91
advanced function printing 50, 84
AFP 50, 84
alignment mark
 with the UFC sensor 66
 without the UFC sensor 70
applications
 bar code 77
 OCR 77
 testing 77, 79
ash content, forms 37
ASHRAE 83, 84
ASTM test reference 21

B
bar codes
 forms 61
 forms identification, preprinted 63
 orientation (labels) 61
 testing 77
basis weight, paper
 basis weight 37
 how determined 28
 metric measure 28
 tolerance 28
 U.S. measure 28
binder holes
 dimensions of 55
 examples of 55
 location 53
 restrictions 53
 size 53
blended, paper 26
bond (paper) 26
bond paper, smoothness 35

calendar cut, causing misfeeds 27
caliper 28, 37
character
 avoiding illegible 27
 coated paper, effects of using 27
 color 37
composition, fiber 37
continuous form paper
 sizes of tractor holes 8
corner cut
 location and size 53
cure (ink)
 allowing time 48
cutouts
 dimensions of 55
 examples of 55
 location 53
 restrictions 53
 size 53
cuts (in perforations)
 cuts and ties, ratio 19
 effect on perforation strength 19
 embossing 18
dimensional characteristics
 page uniformity 7
 stack lean 9
direct mail advertising 51
dishing
 limits 11
documents
 bar codes 61
 checks 52
 marginal fusing of toner 52
 OCR 61
 safeguards 52
drag, paper
 avoiding 23
drag
 paper
 avoiding 23
drag, paper
 avoiding 23
drag
 paper
 avoiding 23
electrophotographic
 paper not designed for 61
 using coated and synthetic labels 59
 using special papers in 61
emboss (paper)
 effects of using 27
 perforations 20
 why to avoid them 48
end-of-forms sensor
 interference with 23
environment
 operating 24
 shipping 24
 storage 24
evaluating test results 79

F
fanfold 2
fiber composition 37
filler 37
fold 2
forms
3900 45
applications testing 77
basis weight 28
colors 62
dimensional
characteristics 7
page uniformity 7
stack lean 9
electronic 50, 84
fusing considerations 28
identification bar codes, preprinted 63
InfoPrint 3000 43
InfoPrint 62 41
operating environment 24
packaging 23
page uniformity 7
paper weight 28
paper, sizes 28
prepunched 53
safety practices 83
safety practices for preprinted forms 83
shipping environment 24
sizes 32
smoothness 28
stack lean 9
stacking reliability 28
standards 7
storage environment 24
terminology 2
testing 77, 79
weight 28
forms recommendations, 600 pel printers 39
forms, preprinted, selecting 47
friction, static 37
fuse
improperly-cured inks, effects on continuous forms
printer 48
near cutouts, holes 53
temperature 27
fusing ability
moisture content 36
paper weight 36
sizing 36
smoothness 36

I
image areas 3
InfoPrint 3000, forms specifications 43
InfoPrint 62, forms specifications 41
ink
bar code documents 61
OCR documents 61
ink recommendations
bar code documents 61
continuous forms printer compatibility 48
negotiable documents 52
OCR documents 61
preprinted forms 48
solid areas 48
vertical lines 48
International Organization for Standardization (ISO)
test reference 21

L
labels
bar codes 61
design requirements 58
odors, caused by 84
physical discomfort 84
pressure sensitive 59
printing 56
safety practices 84
types 56
using coated and synthetic 59
weight and thickness 58
laminate
labels 56
lean, stack 9
ledger paper
fusing, effects on 36
special ledger for OCR 61
location, binder holes 53

M
moisture
content 36, 37
paper 36
multiple-lot test 80

N
negotiable documents
checks 52
document processing 61
folded 52
marginal fusing of toner 52
safeguards 52

O
offset paper
fusing, effects on 36
operating environment, forms 24

G
gauge
stack lean 10
general guidelines for selecting forms 1
glossary 91
gurley 37

H
high-bulk bond, smoothness 35
optical character recognition (OCR)
 fonts 61
 forms 61
 testing 77
orientation, bar-codes on labels 61

P
packaging
 cartons 23
 cartons, height 23
 manufacturers' splices 23
 packing 23
 storage
 stacking boxes 24
 temperature and humidity 24
page uniformity
 perforations
 horizontal 7
 vertical 7
tractor holes
 in left and right margins 7
 spacing from 7
pallet
 storing shipping boxes on 24
paper
 blended 26
 bond, description of 26
 break, causes 19
 characteristics to avoid
 additives, fillers 27
 adhesive additives 27
 calender cuts 27
 chads 37
 coated 27
 containing plastics 27
 cuts and tears 27
 dust 27, 37
 fillers, additives 27
 salts or metallic compounds 27
 waxy surface 27
 wrinkles 27
 colors 62
 labels 56
 moisture content 36
 operating environment 24
 packaging 23
 preprinted forms, paper to use 48
 quality 26
 recommendations 37
 recycled 26
 reverse-side printing 82
 security, papers used in the electrophotographic process 61
 security, use 52
 shipping environment 24
 single ply, use of 32
 smoothness 37
 special 52
 special bond for OCR 61
 stack lean test 9
paper (continued)
 stacking reliability 28
 storage environment 24
 using special paper 51
 weight 28
 weight, fusing considerations 36
 which may cause odors 27
paper weight 30
InfoPrint 4100
 Models HS1 & HD1/HD2 30
 Models PS1 & PD1/PD2 31
perforations
 accuracy of 14
 cuts and ties, ratio 19
 dishing, effect of 11
 embossing 18
 fold memory 17
 folding, memory of 12
 stack lean 9
 strength 19
 testing 21
 vertical and horizontal, location 8
photoconductor
 effects of using embossed paper 27
 platen, preheat
 fusing considerations, lighter paper 36
polymer
 softening with heat 36
porosity 37
pre-printed forms in tractorless mode, using
 with the UFC sensor 66
 without the UFC sensor 70
preface
 terminology 2
preprinted forms
 ink recommendations 48
 ink transfer to continuous forms printer 48
 negotiable documents 52
 odors 83
 paper to use 48
 physical discomfort 83
prepunched forms 53
print
 area 3
 printer
 impact 52
 printing, advanced function 50, 84
 promotional letters 51
R
recommendations, forms selection 37
recycled, paper 26
registration mark
 with the UFC sensor 66
 without the UFC sensor 70
requirements
 environment 24
 forms dimension 7
 perforation
 strength 19
 resistivity, surface 37
 restrictions
 16-pound paper 28
 bar code documents 61
 binder holes 55
 corner cuts 55
 cutouts 55
 guidelines 48
 OCR documents 61
 packaging 23
 paper sizes, weight 28
 perforations
 binder holes 53
 cutouts 53
 testing 21
 reverse-side printing 82
 specialty papers and inks
 negotiable documents 52
 smoothness 35
 stack lean 9
 temperature and humidity 24
 restrictions, binder holes 53
 running perforations 2, 19

S
 safety practices for paper, forms, inks, and labels 83
 sample production run test 81
 troubleshooting 82
 screen
 preprinted solid areas 48
 preprinted tinting inks 48
 selecting
 forms 25, 37
 forms, high-resolution printers 39
 preprinted forms 37
 recommendations 37
 table 37
 sheffield 37
 Sheffield smoothness 58
 single-box test 80
 size, binder holes 53
 sizing
 internal 37
 surface 37
 which may cause fusing failures 27
 smoothness
 bond paper 35
 forms 35, 37
 high-bulk bond 35
 Sheffield 58
 specialty paper 35
 special applications and materials 53
 specialty papers and inks
 direct mail advertising 51
 negotiable documents
 checks 52
 promotional letters 51
 safeguards 52
 specifications, forms
 forms 41, 43
 stack lean
 measuring 9
 testing 9
 stacker
 capacity 23
 moisture, effects of 24
 performance 9
 performance of 14, 17
 static friction 37
 stiffness 37
 storage environment, forms 24
 surface resistivity 37

T
 taber 37
 TAPPI
 test reference 21
 terminology 2, 91
 test
 applications testing 77
 evaluating results 79
 multiple-lot test 80
 perforation
 equipment 21
 method 21
 references 21
 sample production run test 81
 single-box test 80
 stack lean 9
 testing forms and applications 77, 79
 tie
 cuts and ties, ratio 19
 definition 19
 embossing 18
 minimum length for internal perforations 19
 toner
 fusing 52
 tractor holes
 accuracy of drilling 13
 tolerances 7
 trademarks 89
 transfer
 multicolored inks 51
 vertical lines 48

U
 uniformity, page 7

V
 vapor emissions, preprinted forms 49
 ventilation 83, 84
 void
 causing misfeeds 27
W
web
 avoid tearing 23
 avoiding breakage 8
 moisture changes 24